Advertisement

PET imaging of apoptosis with 64Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V

  • Nicole Cauchon
  • Réjean Langlois
  • Jacques A. Rousseau
  • Guillaume Tessier
  • Jules Cadorette
  • Roger Lecomte
  • Darel J. Hunting
  • Roberto A. Pavan
  • Stefan K. Zeisler
  • Johan E. van Lier
Original article

Abstract

Purpose

In vivo detection of apoptosis is a diagnostic tool with potential clinical applications in cardiology and oncology. Radiolabeled annexin-V (anxV) is an ideal probe for in vivo apoptosis detection owing to its strong affinity for phosphatidylserine (PS), the molecular flag on the surface of apoptotic cells. Most clinical studies performed to visualize apoptosis have used 99mTc-anxV; however, its poor distribution profile often compromises image quality. In this study, tumor apoptosis after therapy was visualized by positron emission tomography (PET) using 64Cu-labeled streptavidin (SAv), following pre-targeting of apoptotic cells with biotinylated anxV.

Methods

Apoptosis was induced in tumor-bearing mice by photodynamic therapy (PDT) using phthalocyanine dyes as photosensitizers, and red light. After PDT, mice were injected i.v. with biotinylated anxV, followed 2 h later by an avidin chase, and after another 2 h with 64Cu-DOTA-biotin-SAv. PET images were subsequently recorded up to 13 h after PDT.

Results

PET images delineated apoptosis in treated tumors as early as 30 min after 64Cu-DOTA-biotin-SAv administration, with tumor-to-background ratios reaching a maximum at 3 h post-injection, i.e., 7 h post-PDT. Omitting the administration of biotinylated anxV or the avidin chase failed to provide a clear PET image, confirming that all three steps are essential for adequate visualization of apoptosis. Furthermore, differences in action mechanisms between photosensitizers that target tumor cells directly or via initial vascular stasis were clearly recognized through differences in tracer uptake patterns detecting early or delayed apoptosis.

Conclusion

This study demonstrates the efficacy of a three-step 64Cu pretargeting procedure for PET imaging of apoptosis. Our data also confirm the usefulness of small animal PET to evaluate cancer treatment protocols.

Keywords

Annexin V Molecular imaging Cancer Apoptosis imaging PET tracer Small animal PET 

Notes

Acknowledgements

This work was supported by the Canadian Institutes for Health Research (CIHR grants MOP-44065 and MOP-15348). J.E.v.L. is the holder of the Jeanne and J.-Louis Lévesque Chair in Radiobiology.

References

  1. 1.
    Derradji H, Baatout S. Apoptosis: a mechanism of cell suicide. In Vivo 2003;17:185–92.PubMedGoogle Scholar
  2. 2.
    Lahorte CMM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Dierckx RA, Slegers G. Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 2004;31:887–919.PubMedCrossRefGoogle Scholar
  3. 3.
    Boersma HH, Kietselaer BLJH, Stolk LML, Bennaghmouch A, Hofstra L, Narula J, et al. Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 2005;46:2035–50.PubMedGoogle Scholar
  4. 4.
    Blankenberg FG, Tait J, Ohtsuki K, Strauss HW. Apoptosis: the importance of nuclear medicine. Nucl Med Commun 2000;21:241–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Kemerink GJ, Liu X, Kieffer D, Ceyssens S, Mortelmans L, Verbruggen AM, et al. Safety, biodistribution and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med 2003;44:947–52.PubMedGoogle Scholar
  6. 6.
    Belhocine T, Steinmetz, N, Li C, Green A, Blankenberg FG. The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 2004;3:23–32.PubMedGoogle Scholar
  7. 7.
    Lahorte CM, van de Wiele C, Bacher K, van den Bossche B, Thierens H, van Belle S, et al. Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl Med Commun 2003;24:871–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Collingridge DR, Glaser M, Osman S, Barthel H, Hutchinson OC, Luthra SK, et al. In vitro selectivity, in vivo biodistribution and tumor uptake of annexin V radiolabelled with a positron emitting radioisotope. Br J Cancer 2003;89:1327–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Subbarayan M, Hafeli UO, Feyes DK, Unnithan J, Emancipator SN, Mukhtar H. A simplified method for preparation of 99mTc-annexin V and its biologic evaluation for in vivo imaging of apoptosis after photodynamic therapy. J Nucl Med 2003;44:650–6.PubMedGoogle Scholar
  10. 10.
    Boersma HH, Liem IH, Kemerink GJ, Thimister PW, Hofstra L, Stolk LM, et al. Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5. Br J Radiol 2003;76:553–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Glaser M, Collingridge DR, Aboagye EO, Bouchier-Hayes L, Hutchinson OC, Martin SJ, et al. Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl Radiat Isotopes 2003;58:55–62.CrossRefGoogle Scholar
  12. 12.
    Li C, Wen X, Wu Q, Wallace S, Charnsangavej C, Stachoviak AM, et al. Imaging taxane-induced tumor apoptosis using PEGylated, 111In-labeled annexin V. J Nucl Med 2004;45:108–15.PubMedGoogle Scholar
  13. 13.
    Yade KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, et al. Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 2005;46:658–66.Google Scholar
  14. 14.
    Gonzalez M, Bagatolli LA, Echabe I, Arrondo JL, Argarana CE, Cantor CR, et al. Interaction of biotin with streptavidin. Thermostability and conformational changes upon binding. J Biol Chem 1997;272:11288–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Gonzalez M, Argarana CE, Fidelio GD. Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng 1999;16:67–72.PubMedCrossRefGoogle Scholar
  16. 16.
    van Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM. Annexin-V affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998;31:1–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Murakami Y, Takamatzu H, Taki J, Tatsumi M, Noda A, Ichise R, et al. 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 2004;31:469–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Schrevens A, van Nassauw L, Harrisson F. Histochemical demonstration of apoptotic cells in the chicken embryo using annexin V. Histochem J 1998;30:917–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Sakahara H, Saga T. Avidin-biotin system for delivery of diagnostic agents. Adv Drug Deliv Rev 1999;37:89–101.PubMedCrossRefGoogle Scholar
  20. 20.
    Boerman OC, van Schaijk FG, Oyen WJ, Corstens FH. Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 2003;44:400–11.PubMedGoogle Scholar
  21. 21.
    Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 2002;43:693–713.PubMedGoogle Scholar
  22. 22.
    van den Eijnde SM, Boshart L., Baehrecke EH, de Zeeuw CI, Reutelingsperger CPM, Vermeij-Keers C. Cell surface exposure of phosphatidylserine during apoptosis is phylogenetically conserved. Apoptosis 1998;3:9–16.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang M, Sakahara H, Yao Z, Saga T, Nakamoto Y, Sato N, et al. Intravenous avidin chase improved localization of radiolabeled streptavidin in intraperitoneal xenograft pretargeted with biotinylated antibody. Nucl Med Biol 1997;24:61–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Disc Today 1999;4:507–17.CrossRefGoogle Scholar
  25. 25.
    Korbelik M, Cecic I. Mechanism of tumor destruction by photodynamic therapy. In: Nalwa HS, editor. Handbook of photochemistry and photobiology. Stevenson Ranch, CA: American Scientific Publishers; 2003; p. 39–77.Google Scholar
  26. 26.
    Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 2002;1:1–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Fingar VH, Wieman TJ, Karavolos PM, Doak KW, Ouellet R, van Lier JE. The effects of photodynamic therapy using differently substituted zinc phthalocyanines on vessel constriction, vessel leakage and tumor response. Photochem Photobiol 1993;58:251–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Chan WS, Brasseur N, La Madeleine C, Ouellet R, van Lier JE. Efficacy and mechanism of aluminium phthalocyanine and its sulphonated derivatives mediated photodynamic therapy on murine tumours. Eur J Cancer 1997;33:1855–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Ali H, Langlois R, Wagner R, Brasseur N, Paquette B, van Lier JE. Biological activities of phthalocyanines-X: syntheses and analyses of sulfonated phthalocyanines. Photochem Photobiol 1988;47:713–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Lewis MR, Kao JY, Anderson AL, Shively JE, Raubitschek A. An improved method for conjugating monoclonal antibodies with N-hydroxysulfosuccinimidyl DOTA. Bioconjugate Chem 2001;12:320–4.CrossRefGoogle Scholar
  32. 32.
    Okamoto K, Mizuno M, Nakahara N, Natsume A, Yoshida J, Mori T, et al. Process of apoptosis induced by TNF-α in murine fibroblast Ltk-cells: continuous observation with video enhanced contrast microscopy. Apoptosis 2002;7:77–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Zeisler SK, Pavan RA, Orzechowski J, Langlois R, Rodrigue S, van Lier JE. Production of 64Cu on the Sherbrooke TR-PET cyclotron. J Radioanal Nucl Chem 2003;257:175–7.CrossRefGoogle Scholar
  34. 34.
    McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 1997;24:35–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Sabatino G, Chinol M, Paganelli G, Papi S, Chelli M, Leone G, et al. A new biotin derivative-DOTA conjugate as a candidate for pretargeted diagnosis and therapy of tumors. J Med Chem 2003;46:3170–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Axworthy DB, Reno JM, Hylarides MD, Mallett RW, Theodore LJ, Gustavson LM, et al. Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci U S A 2000;97:1802–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Bissonnette N, Wasylyk B, Hunting DJ. The apoptotic and transcriptional transactivation activities of p53 can be dissociated. Biochem Cell Biol 1997;75:351–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Bérard V, Rousseau JA, Cadorette J, Hubert L, Bentourkia M, van Lier JE, et al. Dynamic imaging of transient metabolic processes by small-animal PET for the evaluation of photosensitizers in photodynamic therapy of cancer. J Nuclear Med 2006;47:1119–26.Google Scholar
  39. 39.
    Gruaz-Guyon A, Raguin O, Barbet J. Recent advances in pretargeted radioimmunotherapy. Curr Med Chem 2005;12:319–38.PubMedGoogle Scholar
  40. 40.
    Mirallié E, Saï-Maurel C, Faivre-Chauvet AF, Regenet N, Chang C-H, Goldenberg DM, et al. Improved pretargeted delivery of radiolabelled hapten to human tumour xenograft in mice by avidin chase of circulating bispecific antibody. Eur J Nucl Med Mol Imaging 2005;32:901–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Kobayashi H, Sakahara H, Endo K, Hosono M, Yao ZS, Toyama S, et al. Comparison of the chase effects of avidin, streptavidin, neutravidin, and avidin-ferritin on a radiolabeled biotinylated anti-tumor monoclonal antibody. Jpn J Cancer Res 1995;86:310–4.PubMedGoogle Scholar
  42. 42.
    Blankenberg FG, Smith C, Gibson DF, Tait JF. Different factors control renal versus hepatic and splenic uptake of annexin V. J Nucl Med 2004;45:149–50.Google Scholar
  43. 43.
    van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 2003;207:105–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Veronese FM, Pasut G. PEGyalation, successful approach to drug delivery. Drug Discovery Today 2005;10:1451–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Meyer DL, Schultz J, Lin Y, Henry A, Sanderson J, Jackson JM, et al. Reduced antibody response to streptavidin through site-directed mutagenesis. Protein Sci 2001;10:491–503.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Nicole Cauchon
    • 1
  • Réjean Langlois
    • 1
  • Jacques A. Rousseau
    • 1
  • Guillaume Tessier
    • 1
  • Jules Cadorette
    • 1
  • Roger Lecomte
    • 1
  • Darel J. Hunting
    • 1
  • Roberto A. Pavan
    • 2
  • Stefan K. Zeisler
    • 2
  • Johan E. van Lier
    • 1
  1. 1.Sherbrooke Molecular Imaging Centre and Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeCanada
  2. 2.Applied Technology Group, TRIUMFVancouverCanada

Personalised recommendations