Advertisement

Reproducibility of [123I]PE2I binding to dopamine transporters with SPECT

  • Morten ZiebellEmail author
  • Gerda Thomsen
  • Gitte M. Knudsen
  • Robin de Nijs
  • Claus Svarer
  • Aase Wagner
  • Lars H. Pinborg
Original article

Abstract

Purpose

The iodinated cocaine derivative [123I]PE2I is a new selective ligand for in vivo studies of the dopamine transporter (DAT) with SPECT. Recently, a bolus/infusion (B/I) protocol for [123I]PE2I measurements of DAT density was established [Pinborg LH et al. J Nucl Med 2005;46:1119–271]. The aims of this study were, firstly, to evaluate the test–retest variability using the B/I protocol and, secondly, to evaluate the B/I approach in a new group of healthy subjects using two outcome parameters, BP1 (CROI/Cplasma) and BP2 (CROI/CREF).

Methods

Seven healthy subjects were subjected to [123I]PE2I SPECT scanning twice. For both studies, the two outcome parameters BP1 and BP2 were calculated based on two different methods for region of interest (ROI) delineation, namely manual delineation and probability map-based automatic delineation with MRI co-registration.

Results

With manual delineation, striatal test–retest variability (absolute difference between first and second scan as a percentage of the mean) of BP1 and BP2 was 13.9% (range 1.8–35.7%) and 4.1% (range 0.5–9.7%) respectively. The probability map-based automatic delineation resulted in striatal test–retest variability of 17.2% (range 4.3–40.5%) and 5.2% (range 0.1–10.9%) respectively. The B/I approach provided stable brain activity from 120 to 180 min post injection in both high- and low-count regions with a mean % change/hour in striatal BP2 of 10.6.

Conclusion

[123I]PE2I SPECT with the B/I approach yields a highly reproducible measure of striatal dopamine transporter binding. The appropriateness of a B/I protocol with a B/I ratio of 2.7 h (i.e. with a bolus worth 2.7 h of infusion) was confirmed in an independent sample of healthy subjects.

Keywords

[123I]PE2I Dopamine transporters SPECT Reproducibility Bolus/infusion 

Notes

Acknowledgements

The authors thank Karin Stahr for expert technical assistance. This work was supported by the Danish Medical Research Council, the Toyota Foundation, the Elsass Foundation, the University of Copenhagen and H:S Hovedstadens Sygehusfællesskab.

References

  1. 1.
    Pinborg LH, Ziebell M, Frokjaer VG, de Nijs R, Svarer C, Haugbol S, et al. Quantification of 123I-PE2I binding to dopamine transporter with SPECT after bolus and bolus/infusion. J Nucl Med 2005;46(7):1119–1127PubMedGoogle Scholar
  2. 2.
    Allard PO, Rinne J, Marcusson JO. Dopamine uptake sites in Parkinson’s disease and in dementia of the Alzheimer type. Brain Res 1994;637(1–2):262–266PubMedCrossRefGoogle Scholar
  3. 3.
    Bao SY, Wu JC, Luo WF, Fang P, Liu ZL, Tang J. Imaging of dopamine transporters with technetium-99m TRODAT-1 and single photon emission computed tomography. J Neuroimaging 2000;10(4):200–203PubMedGoogle Scholar
  4. 4.
    Brucke T, Asenbaum S, Pirker W, Djamshidian S, Wenger S, Wober C, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl 1997;50:9–24PubMedGoogle Scholar
  5. 5.
    Innis RB, Seibyl JP, Scanley BE, Laruelle M, Abi-Dargham A, Wallace E, et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA 1993;90(24):11965–11969PubMedCrossRefGoogle Scholar
  6. 6.
    Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000;47(4):493–503PubMedCrossRefGoogle Scholar
  7. 7.
    Marshall V, Grosset DG. Role of dopamine transporter imaging in the diagnosis of atypical tremor disorders. Mov Disord 2003;18(Suppl 7):S22–S27PubMedCrossRefGoogle Scholar
  8. 8.
    Prunier C, Bezard E, Montharu J, Mantzarides M, Besnard JC, Baulieu JL, et al. Presymptomatic diagnosis of experimental parkinsonism with 123I-PE2I SPECT. Neuroimage 2003;19(3):810–816PubMedCrossRefGoogle Scholar
  9. 9.
    Knudsen GM, Karlsborg M, Thomsen G, Krabbe K, Regeur L, Nygaard T, et al. Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2004;31(12):1631–1638PubMedCrossRefGoogle Scholar
  10. 10.
    Varrone A, Marek KL, Jennings D, Innis RB, Seibyl JP. [123I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy. Mov Disord 2001;16(6):1023–1032PubMedCrossRefGoogle Scholar
  11. 11.
    Carroll FI, Rahman MA, Philip A, Lewin AH, Boja JW, Kuhar MJ. Synthesis and receptor binding of cocaine analogs. NIDA Res Monogr 1991;105:147–153Google Scholar
  12. 12.
    Emond P, Garreau L, Chalon S, Boazi M, Caillet M, Bricard J, et al. Synthesis and ligand binding of nortropane derivatives: N-substituted 2beta-carbomethoxy-3beta-(4′-iodophenyl)nortropane and N-(3-iodoprop-(2E)-enyl)-2beta-carbomethoxy-3beta-(3′,4′-disubstituted phenyl)nortropane. New high-affinity and selective compounds for the dopamine transporter. J Med Chem 1997;40(9):1366–1372PubMedCrossRefGoogle Scholar
  13. 13.
    Videbaek C, Knudsen GM, Bergstrom KA, Hiltunen J, Pinborg LH, Kuikka JT, et al. Octanol extraction yields similar results as HPLC for quantification of [123I]PE2I metabolism. Eur J Nucl Med 1999;26:1139Google Scholar
  14. 14.
    Kretschmann H-J, Weinrich W. Neuroanatomy and cranial computed tomography. Stuttgart: Thieme; 1986Google Scholar
  15. 15.
    Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 2005;24(4):969–979PubMedCrossRefGoogle Scholar
  16. 16.
    Ashburner J, Friston K. Multimodal image coregistration and partitioning—a unified framework. Neuroimage 1997;6(3):209–217PubMedCrossRefGoogle Scholar
  17. 17.
    Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 1992;16(4):620–633PubMedCrossRefGoogle Scholar
  18. 18.
    Pietrzyk U, Herholz K, Fink G, Jacobs A, Mielke R, Slansky I, et al. An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 1994;35(12):2011–2018PubMedGoogle Scholar
  19. 19.
    Booij J, Habraken JB, Bergmans P, Tissingh G, Winogrodzka A, Wolters EC, et al. Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 1998;39(11):1879–1884PubMedGoogle Scholar
  20. 20.
    Morrish PK. How valid is dopamine transporter imaging as a surrogate marker in research trials in Parkinson’s disease? Mov Disord 2003;18(Suppl 7):S63–S70PubMedCrossRefGoogle Scholar
  21. 21.
    Pirker W, Djamshidian S, Asenbaum S, Gerschlager W, Tribl G, Hoffmann M, et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov Disord 2002;17(1):45–53PubMedCrossRefGoogle Scholar
  22. 22.
    Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, et al. Test/retest reproducibility of iodine-123-betaCIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med 1997;38(9):1453–1459PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Morten Ziebell
    • 1
    Email author
  • Gerda Thomsen
    • 1
  • Gitte M. Knudsen
    • 1
  • Robin de Nijs
    • 1
  • Claus Svarer
    • 1
  • Aase Wagner
    • 2
  • Lars H. Pinborg
    • 1
  1. 1.Neurobiology Research UnitRigshospitaletCopenhagenDenmark
  2. 2.Diagnostic RadiologyUniversity Hospital RigshospitaletCopenhagenDenmark

Personalised recommendations