Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma

  • Martin Gotthardt
  • Martin P. Béhé
  • Daniela Beuter
  • Anke Battmann
  • Artur Bauhofer
  • Tino Schurrat
  • Meike Schipper
  • Halina Pollum
  • Wim J. G. Oyen
  • Thomas M. Behr
Original article

Abstract

Purpose

Radiopeptide imaging is a valuable imaging method in the management of patients with neuroendocrine tumours (NET). To determine the clinical performance of gastrin receptor scintigraphy (GRS), it was compared with somatostatin receptor scintigraphy (SRS), computed tomography (CT) and 18F-FDG positron emission tomography (PET) in patients with metastasised/recurrent medullary thyroid carcinoma (MTC).

Methods

Twenty-seven consecutive patients underwent imaging with GRS, SRS (19 patients), CT and PET (26 patients). GRS and SRS were compared with respect to tumour detection and uptake. CT, PET, magnetic resonance imaging (MRI), ultrasound (US) and follow-up were used for verification of findings. In addition, GRS, CT and PET were directly compared with each other to determine which method performs best.

Results

Nineteen patients underwent both GRS and SRS. Among these, GRS showed a tumour detection rate of 94.2% as compared to 40.7% for SRS [mean number of tumour sites (±SD) and 95% confidence intervals (CI): GRS 4.3±3.1/2.8–5.7, SRS 1.8±1.6/1.1–2.6]. In 26 patients, GRS, CT and PET were compared. Here, GRS showed a tumour detection rate of 87.3% (CT 76.1%, PET 67.2%; mean number of tumour sites and 95% CI: GRS 4.5±4.0/2.9–6.1, CT 3.9±3.5/2.5–5.3, PET 3.5±3.3/2.1–4.8). If GRS and CT were combined, they were able to detect 96.7% of areas of tumour involvement.

Conclusion

GRS had a higher tumour detection rate than SRS and PET in our study. GRS in combination with CT was most effective in the detection of metastatic MTC.

Keywords

Peptide Scintigraphy Thyroid cancer 

References

  1. 1.
    Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with (111In-DTPA-D-Phe1)- and (123I-Tyr3)-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20:716–731PubMedCrossRefGoogle Scholar
  2. 2.
    Modlin IM, Tang LH. Approaches to the diagnosis of gut neuroendocrine tumours: the last word today. Gastroenterology 1997;112:583–590PubMedCrossRefGoogle Scholar
  3. 3.
    Ricke J, Klose KJ, Mignon M, Öberg K, Wiedenmann B. Standardisation of imaging in neuroendocrine tumours: results of a European Delphi process. Eur J Radiol 2001;37:8–17PubMedCrossRefGoogle Scholar
  4. 4.
    Lamberts SW, Bakker WH, Reubi JC, Krenning EP. Somatostatin-receptor imaging in the localization of endocrine tumours. N Engl J Med 1990;323:1246–1249PubMedCrossRefGoogle Scholar
  5. 5.
    Bakker WH, Krenning EP, Reubi JC, Breeman WA, Setyono-Han B, de Jong M, et al. In vivo application of [111In-DTPA-D-Phe1]-octreotide for detection of somatostatin receptor-positive tumours in rats. Life Sci 1991;49:1593–1601PubMedCrossRefGoogle Scholar
  6. 6.
    Termanini B, Gibril F, Reynolds JC, Dopman JL, chen CC, Stewart CA, et al. Value of somatostatin receptor scintigraphy: a prospective study in gastrinoma of its effect on clinical management. Gastroenterology 1997;112:335–347PubMedCrossRefGoogle Scholar
  7. 7.
    Lebtahi R, Cadiot G, Sarda L, Daou D, Faraggi M, Petegnief Y, et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumours. J Nucl Med 1997;38:853–858PubMedGoogle Scholar
  8. 8.
    Behr TM, Gratz S, Markus PM, Dunn RM, Hufner M, Schauer A, et al. Anti-carcinoembryonic antigen antibodies versus somatostatin analogs in the detection of metastatic medullary thyroid carcinoma: are carcinoembryonic antigen and somatostatin receptor expression prognostic factors? Cancer 1997;80:2436–2457PubMedCrossRefGoogle Scholar
  9. 9.
    Diehl M, Risse JH, Brandt-Mainz K, Dietlein M, Bohuslavizki KH, Matheja P, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 2001;28:1671–1676PubMedCrossRefGoogle Scholar
  10. 10.
    Szakáll S, Ésik O, Bajzik G, Repa I, Dabasi G, Sinkovics I, et al.18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med 2002;43:66–71PubMedGoogle Scholar
  11. 11.
    Brandt-Mainz K, Müller SP, Görges R, Saller B, Bokisch A. The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nucl Med 2000;27:490–496PubMedCrossRefGoogle Scholar
  12. 12.
    Högerle S, Altehöfer C, Ghanem N, Brink I, Moser E, Nitzsche E.18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 2001;28:64–71CrossRefGoogle Scholar
  13. 13.
    Gotthardt M, Battmann A, Höffken H, Schurrat T, Pollum H, Beuter D, et al. 18F-FDG-PET, somatostatin receptor scintigraphy, and CT in metastatic medullary thyroid carcinoma: a clinical study and an analysis of the literature. Nucl Med Commun 2004;25:439–443PubMedCrossRefGoogle Scholar
  14. 14.
    Gimm O, Sutter T, Dralle H. Diagnosis and therapy of sporadic and familial medullary thyroid carcinoma. J Cancer Res Clin Oncol 2001;127:156–165PubMedCrossRefGoogle Scholar
  15. 15.
    Behr TM, Jenner M, Béhé M, Angerstein C, Gratz S, Raue F, et al. Radiolabelled peptides for targeting of cholecystokinin-B/gastrin receptor expressing tumours: from preclinical development to initial clinical results. J Nucl Med 1999;40:1029–1044PubMedGoogle Scholar
  16. 16.
    Juweid M, Sharkey RM, Behr T, Swayne LC, Rubin AD, Herskovic T, et al. Improved detection of medullary thyroid cancer with radiolabelled antibodies to carcinoembryonic antigen. J Clin Oncol 1996;14:1209–1217PubMedGoogle Scholar
  17. 17.
    Busnardo B, Girelli ME, Simioni N, Nacamulli D, Bosetto E. Nonparallel patterns of calcitonin and carcinoembryonic antigen levels in the follow-up of medullary thyroid carcinoma. Cancer 1984;53:278–285PubMedCrossRefGoogle Scholar
  18. 18.
    Virgolini I, Raderer M, Kurtaran A, Angelberger P, Banyai S, Yang Q, et al. Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumours. N Engl J Med 1994;331:1116–1121PubMedCrossRefGoogle Scholar
  19. 19.
    Hessenius C, Bäder M, Meinhold H, Bohmig M, Faiss S, Reubi JC, et al. Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med 2000;27:1684–1693PubMedCrossRefGoogle Scholar
  20. 20.
    De Visser M, Janssen PJJM, Srinivasan A, Reubi JC, Waser B, Erion JL, et al. Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imag 2003;30:1134–1139CrossRefGoogle Scholar
  21. 21.
    Janssen ML, Oyen WJG, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabelled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 2002;62:6146–6151PubMedGoogle Scholar
  22. 22.
    Hennig IM, Laissue JA, Horisberger U, Reubi JC. Substance P receptors in human primary neoplasms. Int J Cancer 1995;61:786–792PubMedGoogle Scholar
  23. 23.
    Gotthardt M, Boermann OC, Behr TM, Béhé MP, Oyen WJG. Development and clinical application of peptide-based radiopharmaceuticals. Curr Pharm Design 2004;10:2951–2963CrossRefGoogle Scholar
  24. 24.
    Reubi JC, Schaer JC, Laissue JA, Waser B. Somatostatin receptors and their subtypes in human tumours and in peritumoural vessels. Metab Clin Exp 1996;45(Suppl 1):39–41PubMedGoogle Scholar
  25. 25.
    Sreedharan SP, Kodama KT, Peterson KE, Goetzl EJ. Distinct subsets of somatostatin receptors on cultured human lymphocytes. J Biol Chem 1989;264:949–953PubMedGoogle Scholar
  26. 26.
    Blum JE, Handmaker H, Rinne NA. The utility of a somatostatin-type receptor binding peptide radiopharamceutical (P829) in the evaluation of solitary pulmonary nodules. Chest 1999;115:224–232PubMedCrossRefGoogle Scholar
  27. 27.
    Stoffel M, Jamar F, Donckier J, Hainaut P, Decoster P, Beckers C, et al. Increased uptake of indium-111 pentetreotide up to 10 years after external thoracic irradiation: report of two cases. Eur J Nucl Med 1996;23:723–726PubMedCrossRefGoogle Scholar
  28. 28.
    Verga U, Muratori F, Sacco G, Banfi F, Libroia A. The role of radiopharmaceuticals MIBG and (V)DMSA in the diagnosis of medullary thyroid carcinoma. Henry Ford Hosp Med J 1989;37(3–4):175–177PubMedGoogle Scholar
  29. 29.
    Uğur Ö, Kostakoğlu L, Güler N, Kaner B, Uysal U, Elahi N, et al. Comparison of 99mTc(V)-DMSA. 201Tl, and 99mTc-MIBI imaging in the follow-up of patients with medullary carcinoma of the thyroid. Eur J Nucl Med 1996;23:1367–1371PubMedCrossRefGoogle Scholar
  30. 30.
    Diehl M, Risse JH, Brandt-Mainz K, Dietlein M, Bohuslavitzki KH, Matheja P, et al. Fluorine-\ fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 2001;28:1671–1676PubMedCrossRefGoogle Scholar
  31. 31.
    Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor imaging. Eur J Nucl Med Mol Imaging 2003;30:781–793PubMedCrossRefGoogle Scholar
  32. 32.
    Béhé M, Kluge W, Becker W, Gotthardt M, Behr TM. Use of polyglutamic acids to reduce uptake of radiometal-labeled minigastrin in the kidneys. J Nucl Med 2005;46:1012–1015PubMedGoogle Scholar
  33. 33.
    Maecke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging. J Nucl Med 2005;46(Ssuppl 1):172S–178SPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Martin Gotthardt
    • 1
  • Martin P. Béhé
    • 2
  • Daniela Beuter
    • 2
  • Anke Battmann
    • 3
  • Artur Bauhofer
    • 4
  • Tino Schurrat
    • 2
  • Meike Schipper
    • 2
  • Halina Pollum
    • 2
  • Wim J. G. Oyen
    • 1
  • Thomas M. Behr
    • 2
  1. 1.Department of Nuclear MedicineRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  2. 2.Department of Nuclear MedicinePhilipps-University of MarburgMarburgGermany
  3. 3.Department of Diagnostic RadiologyPhilipps-University of MarburgMarburgGermany
  4. 4.Institute of Theoretical SurgeryPhilipps-University of MarburgMarburgGermany

Personalised recommendations