Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio

  • Livia Tossici-BoltEmail author
  • Sandra M. A. Hoffmann
  • Paul M. Kemp
  • Rajnikant L. Mehta
  • John S. Fleming
Original article



A technique is described for accurate quantification of the specific binding ratio (SBR) in [123I]FP-CIT SPECT brain images.


Using a region of interest (ROI) approach, the SBR is derived from a measure of total striatal counts that takes into account the partial volume effect. Operator intervention is limited to the placement of the striatal ROIs, a task facilitated by the use of geometrical template regions. The definition of the image for the analysis is automated and includes transaxial slices within a “slab” approximately 44 mm thick centred on the highest striatal signal. The reference region is automatically defined from the non-specific uptake in the whole brain enclosed in the slab, with exclusion of the striatal region. A retrospective study consisting of 25 normal and 30 abnormal scans—classified by the clinical diagnosis reached with the scan support—was carried out to assess intra- and inter-operator variability of the technique and its clinical usefulness. Three operators repeated the quantification twice and the variability was measured by the coefficient of variation (COV).


The COVs for intra- and inter-operator variability were 3% and 4% respectively. A cutoff ∼4.5 was identified that separated normal and abnormal groups with a sensitivity, specificity and diagnostic concordance of 97%, 92% and 95% respectively.


The proposed technique provides a reproducible and sensitive index. It is hoped that its independence from the partial volume effect will improve consistency in quantitative measurements between centres with different imaging devices and analysis software.


Brain SPECT Dopamine transporters Quantification Specific binding Operator reproducibility 



We would like to thank Anne Dawson for her contribution to the assessment of inter-operator variability.


  1. 1.
    Brucke T, Asenbaum S, Pirker W, Djamshidian S, Wenger S, Wober C, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I-β-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl 1997;50:9–24PubMedGoogle Scholar
  2. 2.
    Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Bruck T. [123I]beta-CIT and SPECT in essential tremor and Parkinson’s disease. J Neural Transm 1998;105:1213–1228PubMedCrossRefGoogle Scholar
  3. 3.
    Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–510PubMedCrossRefGoogle Scholar
  4. 4.
    Ransmayr G, Seppi K, Donnemiller E, Luginger E, Marksteiner J, Riccabona G, et al. Striatal dopamine transporter function in dementia with Lewy bodies and Parkinson’s disease. Eur J Nucl Med 2001;28:1523–1528PubMedCrossRefGoogle Scholar
  5. 5.
    Walker Z, Costa DC, Walker RWH, Shaw K, Gacinovic S, Stevens T, et al. CLE differentiation of dementia with lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 2002;73:130–140Google Scholar
  6. 6.
    O’Brien JT, Colloby S, Fenwick J, Williams ED, Firbank M, Burn D, et al. Dopamine transporter loss visualised with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004;61:919–925PubMedCrossRefGoogle Scholar
  7. 7.
    Marek KL, Seibyl JP, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Fussell B, et al. [123I]beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996;46:231–237PubMedGoogle Scholar
  8. 8.
    Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AGM, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:133–140PubMedGoogle Scholar
  9. 9.
    Booij J, Tissingh G, Winogrodzka A, Boer GJ, Stoof JC, Wolters EC, et al. Practical benefit of [123I]FP-CIT SPECT in the demonstration of the dopaminergic deficit in Parkinson’s disease. Eur J Nucl Med 1997;24:68–71PubMedCrossRefGoogle Scholar
  10. 10.
    Seibyl JP, Marek K, Sheff K, Zoghbi S, Baldwin RB, Charney DS, et al. Iodine-123-β-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporter in healthy subjects and Parkinson’s patients. J Nucl Med 1998;39:1500–1508PubMedGoogle Scholar
  11. 11.
    Mozley PD, Scheneider JS, Acton PD, Plössl K, Stern MB, Siderowf A, et al. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J Nucl Med 2000;41:584–589PubMedGoogle Scholar
  12. 12.
    Tatsch K, Schwarz J, Mozley PD, Linke R, Pogarell O, Oertel WH, et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med 1997;24:415–421PubMedGoogle Scholar
  13. 13.
    Laruelle M, Wallace E, Seibyl JP, Baldwin RM, Zea-Ponce Y, Zoghbi SS, et al. Graphical, kinetic and equilibrium analyses of in vivo [123I]β-CIT binding to dopamine transporter in healthy human subjects. J Cereb Blood Flow Metab 1994;14:982–994PubMedGoogle Scholar
  14. 14.
    Booij J, Hemelaar JTGM, Speelman JD, de Bruin K, Janssen GM, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med 1999;40:753–761PubMedGoogle Scholar
  15. 15.
    Acton PD, Meyer PT, Mozley PD, Plössl K, Kung HF. Simplified quantification of dopamine transporters in humans using [99mTc]TRODAT-1 and single-photon emission tomography. Eur J Nucl Med 2000;27:1714–1718PubMedCrossRefGoogle Scholar
  16. 16.
    Costa DC, Walker Z, Dizdarevic S, Ioannides C, Gacinovic S, Walker RW, et al. Striatal binding index of FP-CIT: a simple method to separate Parkinson’s disease patients and controls [abstract]. Eur J Nucl Med 1998;25:1069Google Scholar
  17. 17.
    Bolt L, Fleming JS, Hoffmann SMA, Kemp PM, Costa DC. Quantifying DaTSCAN images: how automation reduces operator variability. Nucl Med Commun 2003;24:445CrossRefGoogle Scholar
  18. 18.
    Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–N234PubMedCrossRefGoogle Scholar
  19. 19.
    Blinkov SM, Glezer II. The human brain in figures and tables. A quantitative handbook. New York: Basic Books, Plenum Press; 1968. pp 166–171Google Scholar
  20. 20.
    Aylward EH, Li Q, Habbak R, Warren A, Pulsifer MB, Barta PE, et al. Basal ganglia volume in adults with Down syndrome. Psychiatry Res Neuroimaging Section 1997;74:73–82CrossRefGoogle Scholar
  21. 21.
    JL Fleiss. Statistical methods for rates and proportions. 2nd ed. New York: Wiley; 1981zbMATHGoogle Scholar
  22. 22.
    Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310PubMedGoogle Scholar
  23. 23.
    Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–1836PubMedGoogle Scholar
  24. 24.
    Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al. Effects of scatter and attenuation correction on quantitative analysis of β-CIT brain SPECT. Nucl Med Commun 1999;20:159–165PubMedCrossRefGoogle Scholar
  25. 25.
    Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44:512–519PubMedGoogle Scholar
  26. 26.
    Parkinson Study Group. Dopamine transporter brain imaging to assess the effect of pramipexole vs levadopa on Parkinson disease progression. JAMA 2002;13:1653–1661CrossRefGoogle Scholar
  27. 27.
    Kuikka JT, Bergstrom KA, Ahonen A, Hiltunen J, Haukka J, Länsimies E, et al. Comparison of iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane and 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane for imaging the dopamine transporter in the living human brain. Eur J Nucl Med 1995;22:356–360PubMedCrossRefGoogle Scholar
  28. 28.
    Booij J, Habraken JBA, Bergmans P, Tissingh G, Winogrodzka A, Wolters EC, et al. Imaging of dopamine transporter with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 1998;39:1879–1884PubMedGoogle Scholar
  29. 29.
    Ichise M, Ballinger JR, Tanaka F, Moscovitch M, St. George-Hyslop PH, Raphael D, et al. Age-related changes in D2 receptor binding with iodine-123-iodobenzofuran SPECT. J Nucl Med 1998;39:1511–1518PubMedGoogle Scholar
  30. 30.
    Linke R, Gostomzyk J, Hahn K, Tatsch K. [123I]IPT binding to presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–1812PubMedCrossRefGoogle Scholar
  31. 31.
    Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification of dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–1504PubMedGoogle Scholar
  32. 32.
    Pirker W, Asenbaum S, Bencsits G, Prayer D, Gerschlager W, Deecke L, et al. [123I]-β-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000;15:1158–1167PubMedCrossRefGoogle Scholar
  33. 33.
    Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, et al. Imaging serotonin and dopamine transporters with123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000;41:36–44PubMedGoogle Scholar
  34. 34.
    van Dyck CH, Seibyl JP, Malison RT, Laurelle M, Wallace E, Zoghbi SS, et al. Age-related decline in striatal dopamine transporter binding with iodine-123-β-CIT SPECT. J Nucl Med 1995;36:1175–1181PubMedGoogle Scholar
  35. 35.
    Schwarz J, Storch A, Koch W, Pogarelli O, Radau PE, Tatsch K. Loss of dopamine transporter binding follows a single exponential rather than linear decline. J Nucl Med 2004;45:1694–1697PubMedGoogle Scholar
  36. 36.
    Tsuchida T, Ballinger JR, Vines D, Kim YJ, Utsunomiya K, Lang AE, et al. Reproducibility of dopamine transporter density measured with 123I-FPCIT SPECT in normal control and Parkinson’s disease patients. Ann Nucl Med 2004;18:609–616PubMedCrossRefGoogle Scholar
  37. 37.
    Seibyl JP, Laurelle M, van Dick CH, Wallace E, Baldwin RM, Zoghbi S, et al. Reproducibility of iodine-123-β-CIT SPECT brain measurement of dopamine transporters. J Nucl Med 1996;37:222–228PubMedGoogle Scholar
  38. 38.
    Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;45:839–845Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Livia Tossici-Bolt
    • 1
    Email author
  • Sandra M. A. Hoffmann
    • 1
  • Paul M. Kemp
    • 2
  • Rajnikant L. Mehta
    • 3
  • John S. Fleming
    • 1
  1. 1.Department of Medical Physics and BioengineeringSouthampton University Hospital NHS TrustSouthamptonUK
  2. 2.Department of Nuclear MedicineSouthampton University Hospitals NHS TrustSouthamptonUK
  3. 3.Public Health Sciences and Medical Statistics/Research and Development Support Unit, School of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations