[18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients

  • Marino CimitanEmail author
  • Roberto Bortolus
  • Sandro Morassut
  • Vincenzo Canzonieri
  • Antonio Garbeglio
  • Tanja Baresic
  • Eugenio Borsatti
  • Annalisa Drigo
  • Mauro G. Trovò
Original article



We evaluated the potential of PET/CT and [18F]fluoromethylcholine (FCH) in the assessment of suspected recurrence of prostate cancer after treatment.


One hundred consecutive prostate cancer patients with a persistent increase in serum PSA (>0.1 ng/ml) after radical prostatectomy (58 cases), radiotherapy (21 cases) or hormonal therapy alone (21 cases) were investigated. After injection of 3.7–4.07 MBq/kg of FCH, both early (at <15 min) and delayed (at >60 min) PET/CT scans were performed in 43 patients, delayed PET/CT scans in 53 patients and early PET/CT scans in four patients.


Of the 100 patients, 54 (PSA 0.22–511.79 ng/ml) showed positive FCH PET/CT scans. Thirty-seven patients had bone and/or abdominal lymph node uptake, while 17 showed pelvic activity. Malignant disease was confirmed in all but one. Delayed SUVmax of bone metastases was significantly higher (p<0.0001 by paired t test) than that measured at <15 min, whereas no differences were observed between early and delayed SUVs of malignant lymph nodes or pelvic disease. Forty-six patients (PSA 0.12–14.3 ng/ml) showed negative FCH PET/CT scans. Of the negative PET/CT scans, 89% were obtained in patients with serum PSA <4 ng/ml and 87% in patients with a Gleason score <8. In none of these cases could recurrent tumour be proven clinically during a follow-up of 6 months.


FCH PET/CT is not likely to have a significant impact on the care of prostate cancer patients with biochemical recurrence until PSA increases to above 4 ng/ml. However, in selected patients, FCH PET/CT helps to exclude distant metastases when salvage local treatment is intended.


Choline PET Prostate cancer 



We would like to thank Cassa di Risparmio di Udine e Pordenone and Acropolis Foundations for their generous donation of the CT equipment of the PET/CT scanner.


  1. 1.
    Buchanan G, Irvine RA, Coetzee GA, Tilley WD. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev 2001;20:207–223PubMedCrossRefGoogle Scholar
  2. 2.
    Loblaw A, Mendelson D, Talcott J, Virgo K, Somerfield M, Ben-Josef E, et al. American Society of Clinical Oncology recommendations for the initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer. J Clin Oncol 2004;22:2927–2941PubMedCrossRefGoogle Scholar
  3. 3.
    Kozlowski JM, Ellis WJ, Grayhack JT. Advanced prostatic carcinoma. Early versus late endocrine therapy. Urol Clin North Am 1991;18:15–24PubMedGoogle Scholar
  4. 4.
    Smith PH, Bono A, Calais da Silva F, Debruyne F, Denis L, Robinson P, et al. Some limitations of the radioisotope bone scan in patients with metastatic prostatic cancer. A sub analysis of EORTC trial 30853. The EORTC Urological Group. Cancer 1990;66:1009–1016PubMedGoogle Scholar
  5. 5.
    Parivar F, Hricak H, Shinohara K, Kurhanewicz J, Vigneron DB, Nelson SJ, et al. Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology 1996;48:594–599PubMedCrossRefGoogle Scholar
  6. 6.
    Yu KK, Hricak H. Imaging prostate cancer. Radiol Clin North Am 2000;38:59–85PubMedCrossRefGoogle Scholar
  7. 7.
    Kurhanewicz J, Vigneron DB, Males RG, Swanson MG, Yu KK, Hricak H. The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am 2000;38:115–138PubMedCrossRefGoogle Scholar
  8. 8.
    Nudell DM, Wefer AE, Hricak H, Caroll PR. Imaging for recurrent prostate cancer. Radiol Clin North Am 2000;38:213–229PubMedCrossRefGoogle Scholar
  9. 9.
    May F, Treumann T, Dettmar P, Hartung R, Breul J. Limited value of endorectal magnetic resonance imaging and transrectal ultrasonography in the staging of clinically localized prostate cancer. BJU Int 2001;87:66–69PubMedCrossRefGoogle Scholar
  10. 10.
    Hricak H, Schoder H, Pucar D, Lis E, Eberhardt SC, Onyebuchi CN, et al. Advances in imaging in the postoperative patients with a rising prostate-specific antigen level. Semin Oncol 2003;30:616–634PubMedCrossRefGoogle Scholar
  11. 11.
    Kahn D, Williams RD, Manyak MJ, Haseman MK, Seldin DW, Libertino JA, et al. 111Indium-capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. The ProstaScint Group. J Urol 1998;159:2041–2046PubMedCrossRefGoogle Scholar
  12. 12.
    Cher M, Bianco F Jr, Lam J, Davis L, Grignon D, Sakr W, et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol 1998;160:1387–1391PubMedCrossRefGoogle Scholar
  13. 13.
    Moul JW. Prostate specific antigen only progression of prostate cancer. J Urol 2000;163:1632–1642PubMedCrossRefGoogle Scholar
  14. 14.
    Roberts SG, Blute ML, Bergstralh EJ, Slezak JM, Zincke H. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin Proc 2001;76:576–581PubMedCrossRefGoogle Scholar
  15. 15.
    Dotan Z, Bianco F, Rabbani F, Easthman J, Fearn P, Scher H, et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J Clin Oncol 2005;23:1962–1968PubMedCrossRefGoogle Scholar
  16. 16.
    Hoh CK, Seltzer MA, Franklin J, deKernion JB, Phelps ME, Belldegrum A. Positron emission tomography in urological oncology. J Urol 1998;159:347–356PubMedCrossRefGoogle Scholar
  17. 17.
    Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 1999;36:31–35PubMedCrossRefGoogle Scholar
  18. 18.
    Liu IJ, Zafar MB, Lai YH, Segall GM, Terri MK. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 2001;57:108–111PubMedCrossRefGoogle Scholar
  19. 19.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998;39:990–995PubMedGoogle Scholar
  20. 20.
    Kotzerke J, Prang J, Neumaier B, Volkmer B, Guhlmann A, Kleinshmidt K, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 2000;27;1415–1419PubMedCrossRefGoogle Scholar
  21. 21.
    De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJA. Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 2002;42:18–23PubMedCrossRefGoogle Scholar
  22. 22.
    Coleman R, De Grado T, Wang S, Baldwin S, Orr M, Reiman R, et al. Preliminary evaluation of F-18 Fluorocholine (FCH) as a PET tumor imaging agent. Clin Positron Imaging 2000;3:147PubMedCrossRefGoogle Scholar
  23. 23.
    Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003;44:549–555PubMedGoogle Scholar
  24. 24.
    De Grado T, Coleman R, Wang S, Baldwin S, Orr M, Robertson C, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110–117Google Scholar
  25. 25.
    Schoder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 2004;34:274–292PubMedCrossRefGoogle Scholar
  26. 26.
    Seltzer M, Jahan S, Sparks R, Stout DB, Satyamurthy N, Dahlbom M, et al. Radiation dose estimates in humans for 11C-acetate whole-body PET. J Nucl Med 2004;45:1233–1236PubMedGoogle Scholar
  27. 27.
    De Grado T, Reiman R, Price D, Wang S, Coleman R. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2002;43:92–96Google Scholar
  28. 28.
    Schmid D, John H, Zweifel R, Cservenyak T, Westera G, Goerres G, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005;235:623–628PubMedGoogle Scholar
  29. 29.
    Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003;169:1337–1340PubMedCrossRefGoogle Scholar
  30. 30.
    De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJA. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 2003;44:331–335PubMedGoogle Scholar
  31. 31.
    De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJA. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44:32–39PubMedCrossRefGoogle Scholar
  32. 32.
    Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [11C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 2004;31:317–324PubMedCrossRefGoogle Scholar
  33. 33.
    Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005;32:742–748PubMedCrossRefGoogle Scholar
  34. 34.
    Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005;46:1642–1649PubMedGoogle Scholar
  35. 35.
    Hara T, Yuasa M. Automated synthesis of fluorine-18 labeled choline analogue: 2-fluoroethyl-dimethyl-2oxyethylammonium [abstract]. J Nucl Med 1997;38(suppl):44PGoogle Scholar
  36. 36.
    Hara T, Kosaka N, Kishi H. Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 2002;43:187–199PubMedGoogle Scholar
  37. 37.
    De Grado T, Baldwin R, Wang S, Orr M, Liao R, Friedman H, et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42:1805–1814Google Scholar
  38. 38.
    Price D, Coleman R, Liao R, Robertson C, Polascik T, De Grado T. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002;168:273–280PubMedCrossRefGoogle Scholar
  39. 39.
    Kwee S, Wei H, Sesterhenn I, Yun D, Coel M. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006;47:262–269PubMedGoogle Scholar
  40. 40.
    Freedland S, Sutter M, Dorey F, Aronson W. Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy: prostate-specific antigen. Urology 2003;61:365–369PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Marino Cimitan
    • 1
    Email author
  • Roberto Bortolus
    • 2
  • Sandro Morassut
    • 3
  • Vincenzo Canzonieri
    • 4
  • Antonio Garbeglio
    • 5
  • Tanja Baresic
    • 1
  • Eugenio Borsatti
    • 1
  • Annalisa Drigo
    • 6
  • Mauro G. Trovò
    • 2
  1. 1.Department of Nuclear MedicineNational Cancer Institute–CRO Aviano (IRCCS)Aviano (PN)Italy
  2. 2.Department of RadiotherapyNational Cancer Institute–CRO AvianoAviano (PN)Italy
  3. 3.Department of RadiologyNational Cancer Institute–CRO AvianoAviano (PN)Italy
  4. 4.Department of PathologyNational Cancer Institute–CRO AvianoAviano (PN)Italy
  5. 5.Department of UrologyHospital S Maria degli AngeliPordenone (PN)Italy
  6. 6.Medical Physics UnitNational Cancer Institute–CRO AvianoAviano (PN)Italy

Personalised recommendations