Advertisement

Successful high-resolution animal positron emission tomography of human Ewing tumours and their metastases in a murine xenograft model

  • Christiane Franzius
  • Marc Hotfilder
  • Christopher Poremba
  • Sven Hermann
  • Klaus Schäfers
  • Helmut Erich Gabbert
  • Heribert Jürgens
  • Otmar Schober
  • Michael Schäfers
  • Josef Vormoor
Original article

Abstract

Purpose

As primary osseous metastasis is the main adverse prognostic factor in patients with Ewing tumours, a NOD/scid mouse model for human Ewing tumour metastases has been established to examine the mechanisms of metastasis. The aim of this study was to evaluate the feasibility of diagnostic molecular imaging by small animal PET in this mouse model.

Methods

Human Ewing tumour cells were transplanted into immune-deficient NOD/scid mice via s.c injection (n=17) or i.v. injection (n=17). The animals (mean weight 23.2 g) were studied 2–7 weeks after transplantation using a submillimetre resolution animal PET scanner. To assess glucose utilisation and bone metabolism, mice were scanned after intravenous injection of 9.6 MBq (mean) 2-[18F]fluoro-2-deoxy-D-glucose (FDG) or 9.4 MBq (mean) [18F]fluoride. Whole-body PET images were analysed visually and semi-quantitatively [%ID/g, tumour to non-tumour ratio (T/NT)]. Foci of pathological uptake were identified with respect to the physiological organ uptake in corresponding regions.

Results

Subcutaneously transplanted Ewing tumours demonstrated a moderately increased glucose uptake (median %ID/g 2.5; median T/NT 2.2). After i.v. transplantation, the pattern of metastasis was similar to that in patients with metastases in lung, bone and soft tissue. These metastases showed an increased FDG uptake (median %ID/g 3.6; median T/NT 2.7). Osseous metastases were additionally visible on [18F]fluoride PET by virtue of decreased [18F]fluoride uptake (osteolysis; median %ID/g 8.4; median T/NT 0.59). Metastases were confirmed immunohistologically.

Conclusion

Diagnostic molecular imaging of Ewing tumours and their small metastases in an in vivo NOD/scid mouse model is feasible using a submillimetre resolution PET scanner.

Keywords

Small animal PET FDG [18F]fluoride Ewing tumours Mouse model 

Notes

Acknowledgements

The authors gratefully acknowledge the technicians Christine Bätza and Christiane Schäfers for their technical help with the PET imaging and semi-quantitative analysis and Sabine Schneeloch and Claire Feldhoff for their technical help with the histological and immunohistological examinations. The authors thank Dr. rer. nat. Klaus Kopka and Dr. rer. nat. Stefan Wagner for the production of the radiopharmaceuticals. Furthermore, they are grateful to Marilyn Law, PhD, for reviewing the manuscript with respect to the English language. This work was supported by the Innovative Medizinische Forschung (IMF) grant (FR 210321) from the University Hospital Münster, Germany.

References

  1. 1.
    Paulussen M, Ahrens S, Dunst J, Winkelmann W, Exner GU, Kotz R, et al. Localized Ewing tumor of bone: final results on the cooperative Ewing’s sarcoma study CESS 86. J Clin Oncol 2001;19:1818–1829PubMedGoogle Scholar
  2. 2.
    Paulussen M, Ahrens S, Craft AW, Dunst J, Fröhlich B, Jabar S, et al. Ewing’s sarcoma with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewing’s Sarcoma Studies patients. J Clin Oncol 1998;16:3044–3052PubMedGoogle Scholar
  3. 3.
    Paulussen M, Ahrens S, Burdach S, Craft A, Dockhorn-Dworniczak B, Dunst J, et al. Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Ann Oncol 1998;9:275–281PubMedCrossRefGoogle Scholar
  4. 4.
    Delattre O, Zucman J, Plougastel B, Desmaze C, Melat T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992;359:162–165PubMedCrossRefADSGoogle Scholar
  5. 5.
    Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, et al. The Ewing family of tumors—a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 1994;331:294–299PubMedCrossRefGoogle Scholar
  6. 6.
    Dagher R, Pham TA, Sobara L, Kumar S, Long L, Bernstein D, et al. Molecular confirmation of Ewing sarcoma. J Pediatr Hematol Oncol 2001;23:221–224PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer 2002;38:2173–2188PubMedCrossRefGoogle Scholar
  8. 8.
    Chatziioannou AF. Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 2001;29:98–114PubMedCrossRefGoogle Scholar
  9. 9.
    Vormoor J, Baersch G, Decker S, Hotfilder M, Schäfer K-L, Pelken L, et al. Establishment of an in vivo model for pediatric Ewing tumors by transplantation into NOD/scid mice. Pediatr Res 2001;49:332–341PubMedGoogle Scholar
  10. 10.
    Vormoor J, Decker S, Hotfilder M, Poremba C, Dockhorn-Dwornizcak B, Jürgens H. Mechanisms of Ewing tumor cell metastasis to the bone marrow. Blood 2000;96:153bGoogle Scholar
  11. 11.
    Schäfers KP, Reader AJ, Kriens M, Knoess C, Schober O, Schäfers M. Performance evaluation of the 32-module quadHIDAC small animal PET scanner. J Nucl Med 2005;46:996–1004PubMedGoogle Scholar
  12. 12.
    Whang-Peng J, Triche TJ, Knutsen T, Miser J, Douglass EC, Israel MA. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584–585PubMedCrossRefGoogle Scholar
  13. 13.
    van Valen F, Winkelmann W, Jürgens H. Type I and type II insulin-like growth factor receptors and their function in human Ewing’s sarcoma cells in culture. J Cancer Res Clin Oncol 1992;118:269–275PubMedCrossRefGoogle Scholar
  14. 14.
    Kodama K, Doi O, Higashiyama M, Yokouchi H, Tateishi R, Mori Y. Differentiation of a Ewing’s sarcoma cell line towards neural and mesenchymal cell lineages. Jpn J Cancer Res 1994;85:335–338PubMedGoogle Scholar
  15. 15.
    Shultz LD, Schweitzer P, Christianson S, Gott B, Birdsall-Maller I, Tennent B, et al. Multiple defects ininnate and adaptive immunological function in NOD/LtSz-scid mice. J Immunol 1995;154:180–191PubMedGoogle Scholar
  16. 16.
    Wieland BW, Bida GT, Padgett HC, Go H. Current status of CTI target systems for the production of PET radiochemicals. Proceedings of the 3rd Workshop on Targetry and Target Chemistry, Vancouver, British Columbia, Canada, 19–23 June 1989Google Scholar
  17. 17.
    Hamacher K, Coenen HH, Stoecklin G. Efficient stereospecific synthesis of no-carrier-added 2[F-18]-fluoro-2-deoxy-D-glucose using amino polyether supported nucleophilic substitution. J Nucl Med 1986;27:235–238PubMedGoogle Scholar
  18. 18.
    Jeavons AP, Chandler RA, Deuttmar CAR. A 3D HIDAC-PET camera with submillimeter resolution for imaging small animals. IEEE Trans Nucl Sci 1999;3:468–473CrossRefADSGoogle Scholar
  19. 19.
    Berger F, Lee Y-P, Loening AM, Chatziioannou A, Freeland SJ, Leahy R, et al. Whole-body skeletal imaging in mice utilizing microPET: optimization of reproducibility and applications in animal models of bone disease. Eur J Nucl Med Mol Imaging 2002;29:1225–1236PubMedCrossRefGoogle Scholar
  20. 20.
    Moore JV, Wallner ML, Zhao S, Dodd NJF, Acton PD, Jeavons AP, et al. Feasibility of imaging photodynamic injury to tumours by high-resolution positron emission tomography. Eur J Nucl Med Mol Imaging 1998;25:1248–1254CrossRefGoogle Scholar
  21. 21.
    Reader AJ, Ally S, Bakatselos F, Manavaki R, Walledge RJ, Jeavons AP, et al. One-pass list-mode EM algorithm for high resolution image reconstruction into large arrays. IEEE Trans Nucl Sci 2002;49:693–699CrossRefADSGoogle Scholar
  22. 22.
    Palmedo H, Hensel J, Reinhardt M, von Mallek D, Matthies A, Biersack H-J. Breast cancer imaging with PET and SPECT agents: an in vivo comparison. Nucl Med Biol 2002;20:809–815CrossRefGoogle Scholar
  23. 23.
    Yang H, Berger F, Tran C, Gambhir SS, Sawyers CL. MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate 2003;55:39–47PubMedCrossRefGoogle Scholar
  24. 24.
    Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, et al. 3′-Deoxy-3′-[F-18]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63:3791–3798PubMedGoogle Scholar
  25. 25.
    Boisgard R, Vincent-Naulleau S, Leplat J-J, Bouet S, Le Chalony C, Tricaud Y, et al. A new animal model for the imaging of melanoma: correlation of FDG PET with clinical outcome, macroscopic aspects and histological classification in melanoblastoma-bearing Libechav minipigs. Eur J Nucl Med Mol Imaging 2003;30:826–834PubMedCrossRefGoogle Scholar
  26. 26.
    Cooper CR, Chay CH, Gendernalik JD, Lee H-L, Bhatia J, Taichman RS, et al. Stromal factors involved in prostate carcinoma metastasis to bone. Cancer 2003;97(Suppl 3):739–747PubMedCrossRefGoogle Scholar
  27. 27.
    Burger M, Glodek A, Hartmann T, Schmitt-Gräff A, Silberstein LE, Fujii N, et al. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stroma cells. Oncogene 2003;22:8093–8101PubMedCrossRefGoogle Scholar
  28. 28.
    Fernandis AZ, Prasad A, Band H, Klösel R, Ganju RK. Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer. Oncogene 2004;23:157–167PubMedCrossRefGoogle Scholar
  29. 29.
    Wu AM, Yazaki PJ, Tsai S, Nguyen K, Anderson A-L, McCarthy DW, et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. PNAS 2000;97:8495–8500PubMedCrossRefADSGoogle Scholar
  30. 30.
    Franzius C, Sciuk J, Daldrup-Link HE, Jürgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 2000;27:1305–1311PubMedCrossRefGoogle Scholar
  31. 31.
    Franzius C, Sciuk J, Brinkschmidt C, Jürgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18-FDG-PET compared with histologically assessed tumor necrosis. Clin Nucl Med 2000;25:874–881PubMedCrossRefGoogle Scholar
  32. 32.
    Franzius C, Daldrup-Link HE, Sciuk J, Rummeny EJ, Bielack S, Jürgens H, et al. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 2001;12:479–486PubMedCrossRefGoogle Scholar
  33. 33.
    Franzius C, Daldrup-Link HE, Wagner-Bohn A, Sciuk J, Heindel WL, Jürgens H, et al. FDG PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 2002;13:157–160PubMedCrossRefGoogle Scholar
  34. 34.
    Tu S-M, Lin S-H, Logothetis CJ. Stem-cell origin of metastasis and heterogeneity in solid tumors. Lancet Oncol 2002;3:508–513PubMedCrossRefGoogle Scholar
  35. 35.
    Dick JE. Breast cancer stem cells revealed. PNAS 2003;100:3547–3549PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Christiane Franzius
    • 1
  • Marc Hotfilder
    • 2
  • Christopher Poremba
    • 3
  • Sven Hermann
    • 1
  • Klaus Schäfers
    • 1
  • Helmut Erich Gabbert
    • 3
  • Heribert Jürgens
    • 2
  • Otmar Schober
    • 1
  • Michael Schäfers
    • 1
  • Josef Vormoor
    • 2
    • 4
  1. 1.Department of Nuclear MedicineUniversity Hospital MünsterMünsterGermany
  2. 2.Department of Pediatric Hematology and OncologyUniversity Hospital MünsterMünsterGermany
  3. 3.Institute of PathologyHeinrich-Heine-UniversityDüsseldorfGermany
  4. 4.Northern Institute for Cancer ResearchUniversity of Newcastle upon TyneNewcastleGreat Britain

Personalised recommendations