Feasibility of in vivo dual-energy myocardial SPECT for monitoring the distribution of transplanted cells in relation to the infarction site

  • Nguyen Tran
  • Sylvain Poussier
  • Philippe R. Franken
  • Fatiha Maskali
  • Frederique Groubatch
  • Chris Vanhove
  • Laurent Antunes
  • Gilles Karcher
  • Jean-Pierre Villemot
  • Pierre-Yves Marie
Original article

Abstract

Purpose

Cell therapy using bone marrow mesenchymal stem cells (BMSCs) shows promise in the treatment of myocardial infarction (MI) but accurate cell delivery within MI areas remains critical. In the present study, we tested the feasibility of in vivo pinhole SPECT imaging for monitoring the sites of intramyocardial implanted BMSCs in relation to targeted MI areas in rats.

Methods

BMSCs were labelled with 111In-oxine and injected within the fibrotic areas of 3-month-old MI in ten rats. Two days later, dual 111In/99mTc-sestamibi pinhole SPECT was recorded for localisation of 111In-BMSCs on a 15-segment left ventricular (LV) division. Additional 99mTc-sestamibi pinhole SPECT had been performed 1 month earlier and on the day before transplantation. In vitro counting on histological sections was used to validate the pinhole SPECT determination of 111In-BMSC activity within LV segments.

Results

The underperfused MI area (segments with <70% uptake) was stable between the 99mTc-sestamibi SPECT study recorded at 1 month (4.6±1.9 segments) and at 1 day (4.7±2.3 segments) before transplantation. 111In-BMSCs were detected by dual-energy SPECT in 56 segments: 33 (59%) were underperfused MI segments but 23 (41%) were not (14 adjacent and nine remote segments). Finally, 111In-labelled BMSCs were not detected in 14 out of the 47 (30%) underperfused MI segments.

Conclusion

When BMSCs are injected within MI areas in rats, sites of early cell retention do not always match the targeted MI areas. The dual-energy pinhole SPECT technique may be used for monitoring the sites of early retention of implanted BMSCs and the data obtained may have critical importance when analysing the effects of cardiac cell therapy.

Keywords

Myocardial infarction Rats Stem cell therapy Dual-energy SPECT 111In-oxine labelling 

References

  1. 1.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410(6829):701–705CrossRefPubMedGoogle Scholar
  2. 2.
    Tran N, Li Y, Bertrand S, Bangratz S, Carteaux JP, Stoltz JF, et al. Autologous cell transplantation and cardiac tissue engineering: potential applications in heart failure. Biorheology 2003;40(1–3):411–415PubMedGoogle Scholar
  3. 3.
    Chiu RC. Bone-marrow stem cells as a source for cell therapy. Heart Fail Rev 2003;8(3):247–251CrossRefPubMedGoogle Scholar
  4. 4.
    Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106(15):1913–1918CrossRefPubMedGoogle Scholar
  5. 5.
    Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94(5):678–685CrossRefPubMedGoogle Scholar
  6. 6.
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7(4):430–436CrossRefPubMedGoogle Scholar
  7. 7.
    Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005;96(1):127–137CrossRefPubMedGoogle Scholar
  8. 8.
    Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003;9(9):1195–1201CrossRefPubMedGoogle Scholar
  9. 9.
    Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, et al. 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 2004;45(3):512–518PubMedGoogle Scholar
  10. 10.
    Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003;107(16):2134–2139CrossRefPubMedGoogle Scholar
  11. 11.
    Chin BB, Nakamoto Y, Bulte JW, Pittenger MF, Wahl R, Kraitchman DL. 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 2003;24(11):1149–1154CrossRefPubMedGoogle Scholar
  12. 12.
    Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108(7):863–868CrossRefPubMedGoogle Scholar
  13. 13.
    Vanhove C, Lahoutte T, Defrise M, Bossuyt A, Franken PR. Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT. Eur J Nucl Med Mol Imaging 2005;32(2):211–220CrossRefPubMedGoogle Scholar
  14. 14.
    Maskali F, Poussier S, Marie PY, Tran N, Antunes L, Olivier P, et al. High-resolution simultaneous imaging of SPECT, PET, and MRI tracers on histologic sections of myocardial infarction. J Nucl Cardiol 2005;12(2):229–230CrossRefPubMedGoogle Scholar
  15. 15.
    Tran N, Bertrand S, Li Y, Carteaux JP, Stoltz JF, Villemot JP. Beneficial hemodynamic effects of autologous bone marrow cell transplantation in rats with heart failure. Transplant Proc 2002;34(8):3262–3264CrossRefPubMedGoogle Scholar
  16. 16.
    Vanhove C, Franken PR, Defrise M, Deconinck F, Bossuyt A. Reconstruction of gated myocardial perfusion SPET incorporating temporal information during iterative reconstruction. Eur J Nucl Med Mol Imaging 2002;29(4):465–472CrossRefPubMedGoogle Scholar
  17. 17.
    Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27(2):140–146CrossRefPubMedGoogle Scholar
  18. 18.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105(4):539–542CrossRefPubMedGoogle Scholar
  19. 19.
    Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 1999;72(4):570–585CrossRefPubMedGoogle Scholar
  20. 20.
    Tran N, Li Y, Maskali F, Antunes L, Laurens MH, Marie PY, et al. Short term heart retention and distribution of intramyocardial delivered mesenchymal cells within necrotic or intact myocardium. Cell Transplantation 2006;in pressGoogle Scholar
  21. 21.
    Petzold R, Zeilhofer HF, Kalender WA. Rapid protyping technology in medicine—basics and applications. Comput Med Imaging Graph 1999;23(5):277–284CrossRefPubMedGoogle Scholar
  22. 22.
    Salin H, Maitrejean S, Mallet J, Dumas S. Sensitive and quantitative co-detection of two mRNA species by double radioactive in situ hybridization. J Histochem Cytochem 2000;48(12):1587–1592PubMedGoogle Scholar
  23. 23.
    Olivares EL, Ribeiro VP, Werneck de Castro JP, Ribeiro KC, Mattos EC, Goldenberg RC, et al. Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. Am J Physiol Heart Circ Physiol 2004;287(2):H464–H470CrossRefPubMedGoogle Scholar
  24. 24.
    Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 1995;92(3):334–341PubMedGoogle Scholar
  25. 25.
    van der Wall EE, Niemeyer MG, de Roos A, Bruschke AV, Pauwels EK. Infarct sizing by scintigraphic techniques and nuclear magnetic resonance imaging. Eur J Nucl Med 1990;17(1–2):83–90CrossRefPubMedGoogle Scholar
  26. 26.
    Gibbons RJ, Miller TD, Christian TF. Infarct size measured by single photon emission computed tomographic imaging with 99mTc-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation 2000;101(1):101–108PubMedGoogle Scholar
  27. 27.
    Constantinesco A, Choquet P, Monassier L, Israel-Jost V, Mertz L. Assessment of left ventricular perfusion, volumes, and motion in mice using pinhole gated SPECT. J Nucl Med 2005;46(6):1005–1011PubMedGoogle Scholar
  28. 28.
    Pfeffer MA, Braunwald E. Ventricular enlargement following infarction is a modifiable process. Am J Cardiol 1991;68(14):127D–131DCrossRefPubMedGoogle Scholar
  29. 29.
    Mulinari RA, Gavras I, Wang YX, Franco R, Gavras H. Effects of a vasopressin antagonist with combined antipressor and antiantidiuretic activities in rats with left ventricular dysfunction. Circulation 1990;81(1):308–311PubMedGoogle Scholar
  30. 30.
    Meoli DF, Sadeghi MM, Krassilnikova S, Bourke BN, Giordano FJ, Dione DP, et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 2004;113(12):1684–1691CrossRefPubMedGoogle Scholar
  31. 31.
    Giles FJ, Waxman AD, Nguyen KN, Fuerst MP, Kusuanco DA, Franco MM, et al. Comparison of technetium-99m sestamibi and indium-111 octreotide imaging in a patient with Ewing’s sarcoma before and after stem cell transplantation. Cancer 1997;80(12 Suppl):2478–2483CrossRefPubMedGoogle Scholar
  32. 32.
    Even-Sapir E, Keidar Z, Sachs J, Engel A, Bettman L, Gaitini D, et al. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 2001;42(7):998–1004PubMedGoogle Scholar
  33. 33.
    Zhou R, Thomas DH, Qiao H, Bal HS, Choi SR, Alavi A, et al. In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 2005;46(5):816–822PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Nguyen Tran
    • 1
    • 2
  • Sylvain Poussier
    • 3
  • Philippe R. Franken
    • 4
  • Fatiha Maskali
    • 3
  • Frederique Groubatch
    • 1
  • Chris Vanhove
    • 4
  • Laurent Antunes
    • 5
  • Gilles Karcher
    • 3
  • Jean-Pierre Villemot
    • 1
  • Pierre-Yves Marie
    • 3
  1. 1.Laboratory of Surgery School, Faculty of MedicineUHP-NancyVandoeuvre-lès-NancyFrance
  2. 2.Department of Cell Therapy and Tissue Engineering, UMR7560-CNRS, Faculty of MedicineUHP-NancyVandoeuvre-lès-NancyFrance
  3. 3.Department of Nuclear Medicine, CHU-Nancy, INSERM U864, Faculty of MedicineUHP-NancyVandoeuvre-lès-NancyFrance
  4. 4.In Vivo Cellular and Molecular Imaging CenterUniversity of BrusselsBrusselsBelgium
  5. 5.Laboratory of PathologyCHU-NancyVandoeuvre-lès-NancyFrance

Personalised recommendations