Identification of interleukin-2 for imaging atherosclerotic inflammation

  • Zahi A. Fayad
  • Vardan Amirbekian
  • Jean-François Toussaint
  • Valentin Fuster
Editorial Commentary


  1. 1.
    Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997;349:1436–42CrossRefPubMedGoogle Scholar
  2. 2.
    Fuster V, Fayad ZA, Badimon JJ. Acute coronary syndromes: biology. Lancet 1999;353(Suppl 2):SII5–9CrossRefPubMedGoogle Scholar
  3. 3.
    AHA. Heart disease and stroke statistics – 2005 update. Accessed 04 Jan 2005 American Heart Association
  4. 4.
    Zheng ZJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the United States, 1989 to 1998. Circulation 2001;104:2158–63PubMedGoogle Scholar
  5. 5.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997;336:1276–82PubMedGoogle Scholar
  6. 6.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–75PubMedGoogle Scholar
  7. 7.
    Kragel AH, Reddy SG, Wittes JT, Roberts WC. Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 1989;80:1747–56PubMedGoogle Scholar
  8. 8.
    Virmani R, Burke A, Farb A. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. Eur Heart J 1998;19:678–80PubMedGoogle Scholar
  9. 9.
    Choudhury RP, Fuster V, Fayad ZA. Molecular, cellular and functional imaging of atherothrombosis. Nature Rev Drug Discov 2004;3:913–25CrossRefGoogle Scholar
  10. 10.
    Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 1999;6:41–53CrossRefPubMedGoogle Scholar
  11. 11.
    Tsimikas S, Shortal BP, Witztum JL, Palinski W. In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler Thromb Vasc Biol 2000;20:689–97PubMedGoogle Scholar
  12. 12.
    Tsimikas S. Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies. Am J Cardiol 2002;90:L22–L27CrossRefGoogle Scholar
  13. 13.
    Torzewski M, Shaw PX, Han KR, Shortal B, Lackner KJ, Witztum JL, et al. Reduced in vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol 2004;24:2307–12CrossRefPubMedGoogle Scholar
  14. 14.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685–95CrossRefPubMedGoogle Scholar
  15. 15.
    Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 1995;92:8264–8PubMedGoogle Scholar
  16. 16.
    Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999;340:115–26CrossRefPubMedGoogle Scholar
  17. 17.
    Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983;50:127–34PubMedGoogle Scholar
  18. 18.
    Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study. Circulation 2001;104:203–8PubMedGoogle Scholar
  19. 19.
    Bjorkerud S, Bjorkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996;149:367–80PubMedGoogle Scholar
  20. 20.
    Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997;17:2200–8PubMedGoogle Scholar
  21. 21.
    Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003;108:3134–9CrossRefPubMedGoogle Scholar
  22. 22.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, et al. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004;350:1472–3CrossRefGoogle Scholar
  23. 23.
    Carrió I, Pieri PL, Narula J, Prat L, Riva P, Pedrini L, et al. Noninvasive localization of human atherosclerotic lesions with indium 111-labeled monoclonal Z2D3 antibody specific for proliferating smooth muscle cells. J Nucl Cardiol 1998;5:551–7CrossRefPubMedGoogle Scholar
  24. 24.
    Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 2004;110:2843–50CrossRefPubMedGoogle Scholar
  25. 25.
    Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A 2003;100:4736–41CrossRefPubMedGoogle Scholar
  26. 26.
    Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol 1995;26:450–6CrossRefPubMedGoogle Scholar
  27. 27.
    Matter CM, Schuler PK, Alessi P, Meier P, Ricci R, Zhang D, et al. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004;95:1225–33CrossRefPubMedGoogle Scholar
  28. 28.
    Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45:1816–21PubMedGoogle Scholar
  29. 29.
    Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50PubMedGoogle Scholar
  30. 30.
    Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005;12:294–301CrossRefPubMedGoogle Scholar
  31. 31.
    Mochizuki Y, Fujii H, Yasuda S, Nakahara T, Takahashi W, Ide M, et al. FDG accumulation in aortic walls. Clin Nucl Med 2001;26:68–9CrossRefPubMedGoogle Scholar
  32. 32.
    Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 2001;26:314–9CrossRefPubMedGoogle Scholar
  33. 33.
    Machac J, Nunez R, Chen WT, Macapinlac HA. The relation of F-18 FDG uptake in human thoracic aortas and risk factors for CAD [abstract]. J Nucl Med 2002;43:190PGoogle Scholar
  34. 34.
    Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11CrossRefPubMedGoogle Scholar
  35. 35.
    Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 2003;229:831–37PubMedGoogle Scholar
  36. 36.
    Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L. Imaging of large vessel vasculitis with 18FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging 2003;30:1305–13CrossRefPubMedGoogle Scholar
  37. 37.
    Walter MA, Melzer RA, Schindler C, Muller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 2005;32:674–81CrossRefPubMedGoogle Scholar
  38. 38.
    Lipinski MJ, Fuster V, Fisher EA, Fayad ZA. Targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nature Clin Pract Cardiovasc Med 2004;1:48–55Google Scholar
  39. 39.
    Frias JC, Williams KJ, Fisher EA, Fayad ZA. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 2004;126:16316–7CrossRefPubMedGoogle Scholar
  40. 40.
    Varner JA, Brooks PC, Cheresh DA. REVIEW: the integrin alpha V beta 3: angiogenesis and apoptosis. Cell Adhes Commun 1995;3:367–74PubMedGoogle Scholar
  41. 41.
    Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res 1995;77:1129–35PubMedGoogle Scholar
  42. 42.
    Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–64CrossRefPubMedGoogle Scholar
  43. 43.
    Eliceiri BP, Cheresh DA. The role of alphav integrins during angiogenesis. Mol Med 1998;4:741–50PubMedGoogle Scholar
  44. 44.
    Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003;108:2270–4CrossRefPubMedGoogle Scholar
  45. 45.
    Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza GM, et al. Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 2000;44:433–9CrossRefPubMedGoogle Scholar
  46. 46.
    Kerwin W, Hooker A, Spilker M, Vicini P, Ferguson M, Hatsukami T, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 2003;107:851–6CrossRefPubMedGoogle Scholar
  47. 47.
    Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 2004;109:2890–6CrossRefPubMedGoogle Scholar
  48. 48.
    Fuster V. [Thrombus remodeling. Key factor in the progression of coronary atherosclerosis]. Rev Esp Cardiol 2000;53 Suppl 1:2–7PubMedGoogle Scholar
  49. 49.
    Sirol M, Aguinaldo JGS, Graham G, et al. Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis (in press)Google Scholar
  50. 50.
    Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 2000;35:460–71CrossRefPubMedGoogle Scholar
  51. 51.
    Ruehm SG, Corot C, Vogt P, Cristina H, Debatin JF. Ultrasmall superparamagnetic iron oxide-enhanced MR imaging of atherosclerotic plaque in hyperlipidemic rabbits. Acad Radiol 2002;9 Suppl 1:S143–4CrossRefPubMedGoogle Scholar
  52. 52.
    Trivedi R, U-King-Im J, Gillard J. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaque. Circulation 2003;108:e140; author reply e140CrossRefPubMedGoogle Scholar
  53. 53.
    Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107:2453–8CrossRefPubMedGoogle Scholar
  54. 54.
    Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005;96:327–36CrossRefPubMedGoogle Scholar
  55. 55.
    Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004;43:453–60CrossRefPubMedGoogle Scholar
  56. 56.
    Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 1976;193:1007–8PubMedGoogle Scholar
  57. 57.
    Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine 2004;28:109–23CrossRefPubMedGoogle Scholar
  58. 58.
    Okopien B, Krysiak R, Kowalski J, Madej A, Belowski D, Zielinski M, et al. The effect of statins and fibrates on interferon-gamma and interleukin-2 release in patients with primary type II dyslipidemia. Atherosclerosis 2004;176:327–35CrossRefPubMedGoogle Scholar
  59. 59.
    Signore A, Chianelli M, Annovazzi A, Rossi M, Maiuri L, Greco M, et al. Imaging active lymphocytic infiltration in coeliac disease with iodine-123-interleukin-2 and the response to diet. Eur J Nucl Med 2000;27:18–24PubMedGoogle Scholar
  60. 60.
    Annovazzi A, Biancone L, Caviglia R, Chianelli M, Capriotti G, Mather SJ, et al. 99mTc-interleukin-2 and 99mTc-HMPAO granulocyte scintigraphy in patients with inactive Crohn’s disease. Eur J Nucl Med Mol Imaging 2003;30:374–82PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Zahi A. Fayad
    • 1
  • Vardan Amirbekian
    • 2
    • 3
  • Jean-François Toussaint
    • 4
  • Valentin Fuster
    • 5
  1. 1.Imaging Science Laboratories—Department of Radiology and The Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josée and Henry R. Kravis Center for Cardiovascular HealthMount Sinai School of MedicineNew YorkUSA
  2. 2.Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Sarnoff FellowThe Sarnoff Endowment for Cardiovascular ScienceGreat FallsUSA
  4. 4.Département de Physiologie et Radioisotopes Hopital Européen Georges Pompidou (2ème C)ParisFrance
  5. 5.The Zena and Michael A. Wiener Cardiovascular Institute—Marie-Josée and Henry R. Kravis Center for Cardiovascular HealthMount Sinai School of MedicineNew YorkUSA

Personalised recommendations