Non-invasive imaging of cardiac transgene expression with PET: comparison of the human sodium/iodide symporter gene and HSV1-tk as the reporter gene

  • Masao Miyagawa
  • Martina Anton
  • Bettina Wagner
  • Roland Haubner
  • Michael Souvatzoglou
  • Bernd Gansbacher
  • Markus Schwaiger
  • Frank M. Bengel
Molecular Imaging

Abstract

Purpose

Genes encoding for intracellular enzymes or transmembrane proteins are suitable as reporters, but may differ in terms of applicability for cardiac imaging. The aim of this study was to compare the human sodium iodide symporter gene (hNIS) with the herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) as the reporter gene in non-invasive imaging of cardiac transgene expression with positron emission tomography (PET).

Methods

Equal doses of adenoviral vectors encoding for hNIS, wild-type HSV1-tk, mutant HSV1-sr39tk or LacZ as the control gene were directly injected into the myocardium of 34 animals. Two days later, dynamic PET was performed with a clinical scanner, using reporter probes specific for the respective reporter gene. Imaging with 13N-ammonia was also performed to identify cardiac regions of interest.

Results

Kinetics differed significantly: 124I as the probe for hNIS showed rapid early uptake, remaining stable over time. Maximal myocardial concentration was 3.61±1.15%. The nucleoside 18F-FHBG, as the specific probe for HSV1-sr39tk, showed increasing uptake over time, but maximal accumulation was significantly lower (1.45±0.54%, P=0.0009). 124I-FIAU, as the specific probe for wild-type HSV1-tk, showed early uptake with subsequent washout. Maximal accumulation was lowest (0.63±0.23%, P<0.0001). Post-mortem analysis by autoradiography and gamma counting confirmed the in vivo data.

Conclusion

Reporter genes encoding for transporter proteins such as hNIS are an attractive alternative to overexpression of intracellular enzymes for cardiac gene product imaging. hNIS yielded higher signal intensity and imaging contrast for PET than did HSV1-tk and HSV1-sr39tk. Therefore, this approach may be preferable for the future monitoring of cardiac gene- or cell-based therapy.

Keywords

Gene therapy Myocardium Sodium iodide symporter HSV1-tk Adenovirus 

Notes

Acknowledgements

This study was supported by research grants from the Deutsche Forschungsgemeinschaft (Be 2217/4-1). We thank the PET center, cyclotron unit and animal care unit of the Technische Universität München for assistance in the conduct of experiments. Dr. Sam Gambhir, Stanford University, California, USA, and Dr. Christine Spitzweg, Ludwig-Maximilians-University, Munich, Germany, are acknowledged for providing adenoviral vector constructs. We are grateful to Prof. Wolfgang Brandau, Nuklearmedizinische Klinik der Universität Essen, Germany, for providing 124I, and to Dr. Bernhanrd Noll, Forschungszentrum Rossendorf, Germany, for providing precursor for FHBG synthesis.

References

  1. 1.
    Isner JM. Myocardial gene therapy. Nature 2002;415:234–9CrossRefPubMedGoogle Scholar
  2. 2.
    Forrester JS, Price MJ, Makkar RR. Stem cell repair of infarcted myocardium: an overview for clinicians. Circulation 2003;108:1139–45CrossRefPubMedGoogle Scholar
  3. 3.
    Blasberg RG, Tjuvajev JG. Molecular-genetic imaging: current and future perspectives. J Clin Invest 2003;111:1620–9CrossRefPubMedGoogle Scholar
  4. 4.
    Anton M, Wittermann C, Haubner R, Simoes M, Reder S, Essien B, et al. Coexpression of herpesviral thymidine kinase reporter gene and VEGF gene for noninvasive monitoring of therapeutic gene transfer: an in vitro evaluation. J Nucl Med 2004;45:1743–6PubMedGoogle Scholar
  5. 5.
    Wu JC, Chen IY, Wang Y, Tseng JR, Chhabra A, Salek M, et al. Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 2004;110:685–91CrossRefPubMedGoogle Scholar
  6. 6.
    Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, et al. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003;108:1302–5CrossRefPubMedGoogle Scholar
  7. 7.
    Inubushi M, Wu JC, Gambhir SS, Sundaresan G, Satyamurthy N, Namavari M, et al. Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 2003;107:326–32CrossRefPubMedGoogle Scholar
  8. 8.
    Bengel FM, Anton M, Richter T, Simoes MV, Haubner R, Henke J, et al. Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 2003;108:2127–33CrossRefPubMedGoogle Scholar
  9. 9.
    Simoes MV, Miyagawa M, Reder S, Städele C, Haubner R, Linke W, et al. Myocardial kinetics of the reporter probe [124I]-FIAU in isolated perfused rat hearts following in vivo adenoviral transfer of the herpesviral thymidine kinase reporter gene. J Nucl Med 2005;46:98–105PubMedGoogle Scholar
  10. 10.
    Alauddin MM, Shahinian A, GordonEM, Bading JR, Conti PS. Preclinical evaluation of the penciclovir analog 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine for in vivo measurement of suicide gene expression with PET. J Nucl Med 2001;42:1682–90PubMedGoogle Scholar
  11. 11.
    Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996;379:458–60CrossRefPubMedGoogle Scholar
  12. 12.
    Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, et al. Cloning of the human sodium iodide symporter. Biochem Biophys Res Commun 1996;226:339–45CrossRefPubMedGoogle Scholar
  13. 13.
    Miyagawa M, Beyer M, Wagner B, Anton M, Spitzweg C, Gansbacher B, et al. Cardiac reporter gene imaging using the human sodium/iodide symporter gene. Cardiovasc Res 2005;65:195–202CrossRefPubMedGoogle Scholar
  14. 14.
    Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, Young CY, et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 2001;8:1524–31CrossRefPubMedGoogle Scholar
  15. 15.
    Bengel FM, Anton M, Avril N, Brill T, Nguyen N, Haubner R, et al. Uptake of radiolabeled 2′-fluoro-2′-deoxy-5-iodo-1-β-d-arabinofuranosyluracil in cardiac cells after adenoviral transfer of the herpesvirus thymidine kinase gene: the cellular basis for cardiac gene imaging. Circulation 2000;102:948–50PubMedGoogle Scholar
  16. 16.
    Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 2000;97:2785–90Google Scholar
  17. 17.
    Hitt M, Bett AJ, Addison CL, Prevec L, Graham FL. Techniques for human adenovirus vector construction and characterization. In: Adolph KW, editor. Viral gene techniques. San Diego: Academic, 1995. p. 13–30Google Scholar
  18. 18.
    Brust P, Haubner R, Friedrich A, Scheunemann M, Anton M, Koufaki ON, et al. Comparison of [18F]FHPG and [124/125I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression. Eur J Nucl Med 2001;28:721–9Google Scholar
  19. 19.
    Miyagawa M, Anton M, Haubner R, Simoes MV, Städele C, Erhardt W, et al. PET of cardiac transgene expression: comparison of 2 approaches based on herpesviral thymidine kinase reporter gene. J Nucl Med 2004;45:1917–23PubMedGoogle Scholar
  20. 20.
    Weig HJ, Laugwitz KL, Moretti A, Kronsbein K, Städele C, Bruning S, et al. Enhanced cardiac contractility after gene transfer of V2 vasopressin receptors in vivo by ultrasound-guided injection or transcoronary delivery. Circulation 2000;101:1578–85PubMedGoogle Scholar
  21. 21.
    Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43:1072–83PubMedGoogle Scholar
  22. 22.
    Jacobs A, Tjuvajev JG, Dubrovin M, Akhurst T, Balatoni J, Beattie B, et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 2001;61:2983–95PubMedGoogle Scholar
  23. 23.
    Perron B, Rodriguez AM, Leblanc G, Pourcher T. Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissue. J Endocrinol 2001;170:185–96CrossRefPubMedGoogle Scholar
  24. 24.
    Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–32PubMedGoogle Scholar
  25. 25.
    Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–95PubMedGoogle Scholar
  26. 26.
    Shen DHY, Kloos RT, Mazaferri EL, Jhiang SM. Sodium iodide symporter in health and disease. Thyroid 2001;11:415–25CrossRefPubMedGoogle Scholar
  27. 27.
    Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188–200PubMedGoogle Scholar
  28. 28.
    Boelaert K, Franklyn JA. Sodium iodide symporter: a novel strategy to target breast, prostate, and other cancers? Lancet 2003;361 9360:796–7CrossRefPubMedGoogle Scholar
  29. 29.
    Groot-Wassink T, Barthel H, Lemoine NR, Vassaux G. Sodium iodide symporter: a new strategy to target cancer? Lancet 2003;361 9372:1905–6CrossRefGoogle Scholar
  30. 30.
    Spitzweg C, Zhang S, Bergert ER, Castro MR, McIver B, Heufelder AE, et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 1999;59:2136–41PubMedGoogle Scholar
  31. 31.
    Nakamoto Y, Saga T, Misaki T, Kobayashi H, Sato N, Ishimori T, et al. Establishment and characterization of a breast cancer cell line expressing Na+/I− symporters for radioiodide concentrator gene therapy. J Nucl Med 2001;42:317–25PubMedGoogle Scholar
  32. 32.
    Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, et al. Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 2001;42:317–25PubMedGoogle Scholar
  33. 33.
    Haberkorn U, Kinschrf R, Kissel M, Kuebler W, Mahmut M, Sieger S, et al. Enhanced iodide transport after transfer of the human sodium iodide symporter gene is associated with lack of retention and low absorbed dose. Gene Ther 2003;10:774–80CrossRefPubMedGoogle Scholar
  34. 34.
    Franz WM, Rothmann T, Frey N, Katus HA. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc Res 1997;35:560–6CrossRefPubMedGoogle Scholar
  35. 35.
    Chen IY, Wu JC, Min JJ, Sundaresan G, Lewis X, Liang Q, et al. Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 2004;109:1415–20CrossRefPubMedGoogle Scholar
  36. 36.
    Zinn KR, Buchsbaum DJ, Chaudhuri TR, Mountz JM, Grizzle WE, Rogers BE. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med 2000;41:887–95PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Masao Miyagawa
    • 1
  • Martina Anton
    • 2
  • Bettina Wagner
    • 1
    • 2
  • Roland Haubner
    • 1
  • Michael Souvatzoglou
    • 1
  • Bernd Gansbacher
    • 2
  • Markus Schwaiger
    • 1
  • Frank M. Bengel
    • 1
  1. 1.Nuklearmedizinische Klinik und PoliklinikTechnische Universität München, Klinikum rechts der IsarMünchenGermany
  2. 2.Institut für Experimentelle Onkologie und TherapieforschungTechnische Universität MünchenMunichGermany

Personalised recommendations