To use MIBI or not to use MIBI? That is the question when assessing tumour cells

  • Jean-Luc Moretti
  • Nathalie Hauet
  • Meltem Caglar
  • Olivier Rebillard
  • Zeynep Burak
Review Article


99mTc-sestamibi (MIBI) is a well-known tumour imaging agent. Its retention within tumour cell mitochondria is related to perfusion and to the magnitude of the electrical gradient, reflecting cell viability. Several internal cell factors modulate this uptake; for example, multidrug resistance membrane proteins (Pgp and MRP1) and anti-apoptotic BCl-2 protein of the outer mitochondrial membrane can limit retention of MIBI. At the early stage of cell apoptosis, the electrical driving forces of MIBI uptake are impaired, and influx and accumulation are reduced. It seems clear that MIBI can be used before treatment to detect drug resistance, assess anti-apoptotic status and predict treatment efficacy. Although it has been suggested that MIBI might be used to monitor tumour response to treatment, MIBI is unable to differentiate tumours with ongoing apoptosis from those developing drug resistance.


99mTc-sestamibi MIBI Multidrug resistance Apoptosis Treatment response 


  1. 1.
    Nishiyama Y, Kawasaki Y, Yamamoto Y, Fukunaga K, Satoh K, Takashima H, et al. Technetium-99m-MIBI and thallium-201 scintigraphy of primary lung cancer. J Nucl Med 1997;38:1358–61PubMedGoogle Scholar
  2. 2.
    Ballinger JR. Imaging multidrug resistance with radiolabeled substrates for P-glycoprotein and multidrug resistance protein. Cancer Biother Radiopharm 2001;16:1–7CrossRefPubMedGoogle Scholar
  3. 3.
    Del Vecchio S, Ciarmiello A, Salvatore M. Scintigraphic detection of multidrug resistance in cancer. Cancer Biother Radiopharm 2000;15:327–37PubMedGoogle Scholar
  4. 4.
    Omar WS, Eissa S, Moustafa H, Farag H, Ezzat I, Abdel-Dayem HM. Role of thallium-201 chloride and Tc-99m methoxy-isobutyl-isonitrile (sestaMIBI) in evaluation of breast masses: correlation with the immunohistochemical characteristic parameters (Ki-67, PCNA, Bcl and angiogenesis) in malignant lesions. Anticancer Rev 1997;17:1639–44Google Scholar
  5. 5.
    Summerhayes IC, Lampidis TJ, Bernal SD, Nadakavukaren JJ, Nadakavukaren KK, Shepherd EL, et al. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci U S A 1982;79:5292–6PubMedGoogle Scholar
  6. 6.
    Lampidis TJ, Shi YF, Calderon CL, Kolinias D, Tapiero H, Savaraj N. Accumulation of simple organic cations correlates with differential cytotoxicity in multidrug-resistant and -sensitive human and rodent cells. Leukemia 1997;11:1156–9CrossRefPubMedGoogle Scholar
  7. 7.
    Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 1988;4:155–81CrossRefPubMedGoogle Scholar
  8. 8.
    Modica-Napolitano JS, Aprille JR. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res 1987;47:4361–5PubMedGoogle Scholar
  9. 9.
    Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 2001;49:63–70CrossRefPubMedGoogle Scholar
  10. 10.
    Cavalli LR, Liang BC. Mutagenesis, tumorigenicity and apoptosis: are the mitochondria involved? Mutat Res 1998;398:19–26PubMedGoogle Scholar
  11. 11.
    Wallace DC. Mitochondrial diseases in man and mouse. Science 1999;283:1482–8CrossRefPubMedGoogle Scholar
  12. 12.
    Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Ann Rev Physiol 1998;60:619–42CrossRefGoogle Scholar
  13. 13.
    Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Charlop AW, et al. [Tc-99m]-sestamibi uptake and washout in locally advanced breast cancer are correlated with tumor blood flow. Nucl Med Biol 2002;29:719–27CrossRefPubMedGoogle Scholar
  14. 14.
    Wackers FJ, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 1989;30:301–11PubMedGoogle Scholar
  15. 15.
    Kinuya S, Yokoyama K, Li XF, Bai J, Watanabe N, Shuke N, et al. Hypoxia-induced alteration of tracer accumulation in cultured cancer cells and xenografts in mice: implications for pre-therapeutic prediction of treatment outcomes with 99mTc-sestamibi, 201Tl chloride and 99mTc-HL91. Eur J Nucl Med Mol Imaging 2002;29(8):1006–11CrossRefPubMedGoogle Scholar
  16. 16.
    Madar I, Weiss L, Izbicki G. Preferential accumulation of 3H-tetraphenylphosphonium in non-small cell lung carcinoma in mice: comparison with 99mTc-MIBI. J Nucl Med 2002;43:234–8PubMedGoogle Scholar
  17. 17.
    Arbab AS, Loizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 1996;37:1551–6PubMedGoogle Scholar
  18. 18.
    Arbab AS, Koisumi K, Toyama K, Arai T, Araki T. Ion transport systems in the uptake of 99Tcm-MIBI and 201Tl in a tumour cell line. Nucl Med Commun 1997;18:235–40PubMedGoogle Scholar
  19. 19.
    Arbab AS, Koizumi K, Toyama K, Arai T, Araki T. Technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 uptake in rat myocardial cells. J Nucl Med 1998;39:266–71PubMedGoogle Scholar
  20. 20.
    Naito S, Hasegawa S, Yokomizo A, Koga H, Kotoh S, Kuwano M, et al. Non-p-glycoprotein-mediated atypical multidrug resistance in a human bladder cancer cell line. Jpn J Cancer Res 1995;86:1112–8PubMedGoogle Scholar
  21. 21.
    Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of p-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996;49:311–8PubMedGoogle Scholar
  22. 22.
    Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med 1990;31(10):1646–53PubMedGoogle Scholar
  23. 23.
    Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium (I) in cultured chick myocardial cells. Circulation 1990;82:1826–38PubMedGoogle Scholar
  24. 24.
    Hockings PD, Rogers PJ. The measurement of transmembrane electrical potential with lipophilic cations. Biochim Biophys Acta 1996;1282:101–6PubMedGoogle Scholar
  25. 25.
    Delmon-Moingeon LI, Piwnica-Worms D, Van Den Abbeele AD, Holman BL, Davison A, Jones AG. Uptake of the cation hexakis(2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 1990;50:2198–2202PubMedGoogle Scholar
  26. 26.
    Lampidis TJ, Bernal SD, Summerhayes IC, Chen LB. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res 1983;43:716–20PubMedGoogle Scholar
  27. 27.
    Burns RJ, Murphy MP. Labeling of mitochondrial proteins in living cells by the thiol probe thiobutyltriphenylphosphonium bromide. Arch Biochem Biophys 1997;339:33–9CrossRefPubMedGoogle Scholar
  28. 28.
    Barbaries E, Kronauge JF, Davison A, Jones AG. Uptake of cationic technetium complexes in cultured human carcinoma cells and human xenografts. Nucl Med Biol 1998;25:667–73CrossRefPubMedGoogle Scholar
  29. 29.
    Fossati G, Moulding DA, Spiller DG, Moots RJ, White MR, Dewards SW. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation and commitment to apoptosis. J Immunol 2003;170:1964–72PubMedGoogle Scholar
  30. 30.
    Madar I, Anderson JH, Szabo Z, Scheffel U, Kao PF, Ravert HT, et al. Enhanced uptake of [11C]TPMP in canine brain tumor: a PET study. J Nucl Med 1999;40:1180–5PubMedGoogle Scholar
  31. 31.
    Vergote J, Di Benedetto M, Moretti JL, Azaloux H, Kouyoumdjian JC, Kraemer M, et al. Could 99mTc-MIBI be used to visualize the apoptotic MCF7 human breast cancer cells? Cell Mol Biol (Noisy-Le-Grand) 2001;47:467–71Google Scholar
  32. 32.
    Naito S, Hasegawa S, Yokomizo A, Koga H, Kotoh S, Kuwano M, et al. Non-p-glycoprotein-mediated atypical multidrug resistance in a human bladder cancer cell line. Jpn J Cancer Res 1995;86:1112–8PubMedGoogle Scholar
  33. 33.
    Bellamy WT. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol 1996;36:161–83CrossRefPubMedGoogle Scholar
  34. 34.
    Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:382–427CrossRefGoogle Scholar
  35. 35.
    German UA, Pastan I, Gottesman MM. P-glycoproteins: mediators of multidrug resistance. Semin Cell Biol 1993;4:63–76CrossRefPubMedGoogle Scholar
  36. 36.
    Ling V. P-glycoprotein: its role in drug resistance. Am J Med 1995;99:31–4CrossRefGoogle Scholar
  37. 37.
    Higgins CV, Callaghan T, Linton KJ, Rosenberg MR, Ford RC. Structure of the multidrug resistance P-glycoprotein. Semin Cancer Biol 1997;81:135–42CrossRefGoogle Scholar
  38. 38.
    Ballinger JR, Muzzammil T, Moore MJ. Technetium-99m-furifosmin as an agent for functional imaging of multidrug resistance in tumors. J Nucl Med 1997;38:1915–9PubMedGoogle Scholar
  39. 39.
    Muzzammil T, Ballinger JR, Moore MJ. 99mTc-sestamibi imaging of inhibition of the multidrug resistance transporter in a mouse xenograft model of human breast cancer. Nucl Med Commun 1999;20:115–22PubMedGoogle Scholar
  40. 40.
    Sun SS, Hseih JF, Tsai SC, Ho YJ, Kao CH. Technetium-99m tetrofosmin mammoscintigraphy findings related to the expression of P-glycoprotein mediated multidrug resistance. Anticancer Res 2000;20:1467–70PubMedGoogle Scholar
  41. 41.
    Muzzammil T, Moore MJ, Ballinger JR. In vitro comparison of sestamibi, tetrofosmin and furifosmin as agents for functional imaging of multidrug resistance in tumors. Cancer Biother Radiopharm 2000;15:339–46PubMedGoogle Scholar
  42. 42.
    Del Vecchio S, Ciarmiello A, Potena MI, Carriero MV, Mainolfi C, Botti G, et al. In vivo detection of multidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer patients. Eur J Nucl Med 1997;24:150–9PubMedGoogle Scholar
  43. 43.
    Del Vecchio S, Ciarmiello A, Salvatore M. Clinical imaging of multidrug resistance in cancer. QJ Nucl Med 1999;453:125–31Google Scholar
  44. 44.
    Tunggal JK, Ballinger JR, Tannock LF. Influence of cell concentration in limiting the therapeutic benefit of P-glycoprotein reversal agents. Int J Cancer 1998;81:741–7CrossRefGoogle Scholar
  45. 45.
    Chen CC, Meadows B, Regis J, Kalafsky G, Fojo T, Carrasquillo JA, et al. Detection of in vivo P-glycoprotein inhibition by PSC 833 using Tc-99m sestamibi. Clin Cancer Res 1997;3:545–52PubMedGoogle Scholar
  46. 46.
    Bakker M, Vand Der Graaf WT, Piers DA, Franssen EJ, Groen HJ, Smit EF, et al. 99mTc-sestamibi scanning with SDZ PSC 833 as a functional detection method for resistance modulation in patients with solid tumours. Anticancer Res 1999;19:2349–53PubMedGoogle Scholar
  47. 47.
    Ballinger JR, Hua HA, Berry BW, Firby P, Bowen I. 99mTc-sestamibi as an agent for imaging P-glycoprotein-mediated multidrug resistance: in vitro and in vivo studies in a rat breast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun 1995;16:253–7PubMedGoogle Scholar
  48. 48.
    Muzzammil T, Moore MJ, Hedley D, Ballinger JR. Comparison of 99mTc-sestamibi and doxorubicin to monitor inhibition of P-glycoprotein function. Br J Cancer 2001;84:367–73CrossRefPubMedGoogle Scholar
  49. 49.
    Moretti JL, Duran Cordobes M, Starzec A, de Beco V, Vergote J, Benazzouz F, et al. Involvement of glutathione in loss of technetium-99m-MIBI accumulation related to membrane MDR protein expression in tumor cells. J Nucl Med. 1998;39(7):1214–8PubMedGoogle Scholar
  50. 50.
    Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911PubMedGoogle Scholar
  51. 51.
    Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–12CrossRefPubMedGoogle Scholar
  52. 52.
    Cory S, Adams JM. The Bcl-2 family: regulators of the cellular life or death switch. Nat Rev Cancer 2002;2:647–56CrossRefPubMedGoogle Scholar
  53. 53.
    Kamesaki S, Kamesaki H, Jorgensen TJ, Tanizawa A, Pommier Y, Cossman J. Bcl-2 protein inhibits etoposide-induced apoptosis through its effects on events subsequent to topoisomerase II-induced DNA strand breaks and their repair. Cancer Res 1993;53:4251–6PubMedGoogle Scholar
  54. 54.
    Miyashita T, Reed JC. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 1993;81:151–7PubMedGoogle Scholar
  55. 55.
    Reed JC. Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 1999;11:68–75CrossRefPubMedGoogle Scholar
  56. 56.
    Del Vecchio S, Zannetti A, Aloj L, Caraco C, Ciarmiello A, Salvatore M. Inhibition of early 99mTc-MIBI uptake by Bcl-2 anti-apoptotic protein overexpression in untreated breast carcinoma. Eur J Nucl Med Mol Imaging 2003;30:879–87PubMedGoogle Scholar
  57. 57.
    Rutledge SE, Chin JW, Schepartz A. A view to a kill: ligands for Bcl-2 family proteins. Curr Opin Chem Biol 2002;6:479–85CrossRefPubMedGoogle Scholar
  58. 58.
    Kao CH, ChalgLai SP, Chieng PU, Yen TC. Technetium-99m methoxyisobutylisonitrile chest imaging of small cell lung carcinoma: relation to patient prognosis and chemotherapy response—a preliminary report. Cancer 1998;83:64–8CrossRefPubMedGoogle Scholar
  59. 59.
    Ceriani L, Giovanella L, Bandera M, Beghe B, Ortelli M, Roncari G. Semi-quantitative assessment of 99Tcm-sestamibi uptake in lung cancer: relationship with clinical response to chemotherapy. Nucl Med Commun 1997;18:1087–1097PubMedGoogle Scholar
  60. 60.
    Bom HS, Kim YC, Song HC, Min JJ, Kim HY, Park KO. Technetium-99m-MIBI uptake in small cell lung cancer. J Nucl Med 1998;39:91–4PubMedGoogle Scholar
  61. 61.
    Yamamoto Y, Nishiyama Y, Satoh K, Takashima H, Ohkawa M, Fujita J, et al. Comparative study of technetium-99m-sestamibi and thallium-201 SPECT in predicting chemotherapeutic response in small cell lung cancer. J Nucl Med 1998;39:1626–9PubMedGoogle Scholar
  62. 62.
    Kao CH, Hsieh JF, Tsai SC, Ho YJ, Lee JK. Quickly predicting chemotherapy response to paclitaxel-based therapy in non-small cell lung cancer by early technetium-99m methoxyisobutylisonitrile chest single-photon-emission computed tomography. Clin Cancer Res 2000;6:820–4PubMedGoogle Scholar
  63. 63.
    Nishiyama Y, Yamamoto Y, Satoh K, Ohkawa M, Kameyama K, Hayashi E, et al. Comparative study of Tc-99m MIBI and Tl-201 SPECT in predicting chemotherapeutic response in non-small-cell lung cancer. Clin Nucl Med 2000;25;364–9CrossRefPubMedGoogle Scholar
  64. 64.
    Nishiyama Y, Yamamoto Y, Fukunaga K, Kiuchi T, Satoh K, Takashima H, et al. Evaluation of radiotherapeutic response in non-small cell lung cancer patients by technetium-99m MIBI and thallium-201 chloride SPECT. Eur J Nucl Med 2000;27:536–41CrossRefPubMedGoogle Scholar
  65. 65.
    Shih WJ, Rastogi A, Stipp V, Magoun S, Coupal J. Functional retention of Tc-99m MIBI in mediastinal lymphomas as a predictor of chemotherapeutic response demonstrated by consecutive thoracic SPECT imaging. Clin Nucl Med 1998;23:505–8CrossRefPubMedGoogle Scholar
  66. 66.
    Moretti JL, Azaloux H, Boisseron D, Kouyoumdjian JC, Vilcoq J. Primary breast cancer imaging with technetium-99m sestamibi and its relation with P-glycoprotein overexpression. Eur J Nucl Med 1996;23:980–6CrossRefPubMedGoogle Scholar
  67. 67.
    Burak Z, Moretti JL, Ersoy O, Sanli U, Kantar M, Tamgac F, et al. 99mTc-MIBI imaging as a predictor of therapy response in osteosarcoma compared with multidrug resistance-associated protein and P-glycoprotein expression. J Nucl Med 2003;44:1394–1401PubMedGoogle Scholar
  68. 68.
    Hendrikse NH, Franssen EJ, Van Der Graaf WT, Vaalburg W, De Vries EG. Visualization of multidrug resistance in vivo. Eur J Nucl Med 1999;26:283–93CrossRefPubMedGoogle Scholar
  69. 69.
    Dimitrakopoulou-Strauss A, Strauss LG, Goldschmidt H, Lorenz WJ, Meier-Borst W, Van Kaick G. Evaluation of tumor metabolism and multidrug resistance in patients with treated malignant lymphomas. Eur J Nucl Med 1995;22:434–42CrossRefPubMedGoogle Scholar
  70. 70.
    Kapucu LO, Akyuz C, Vural G, Oguz A, Atasever T, Buyukpamukcu M, et al. Evaluation of therapy response in children with untreated malignant lymphomas using technetium-99m-sestamibi. J Nucl Med 1997;38:243–7PubMedGoogle Scholar
  71. 71.
    Kao CH, Tsai SC, Wang JJ, Ho YJ, Ho ST, Changlai SP. Technetium-99m-sestamethoxyisobutylisonitrile scan as a predictor of chemotherapy response in malignant lymphomas compared with P-glycoprotein expression, multidrug resistance-related protein expression and other prognosis factors. Br J Haematol 2001;113:369–74CrossRefPubMedGoogle Scholar
  72. 72.
    Yuksel M, Cermik F, Doganay L, Karlikaya C, Cakir E, Salan A, et al. 99mTc-MIBI SPET in non-small cell lung cancer in relationship with Pgp and prognosis. Eur J Nucl Med Mol Imaging 2002;29:876–81CrossRefPubMedGoogle Scholar
  73. 73.
    Sun SS, Shiau YC, Lin CC, Kao A, Lee CC. Correlation between P-glycoprotein (P-gp) expression in parathyroid and Tc-99m-MIBI parathyroid image findings. Nucl Med Biol 2001;28:929–33CrossRefPubMedGoogle Scholar
  74. 74.
    Kostakoglu L, Uysal U, Ozyar E, Hayran M, Uzal D, Demirkazik FB, et al. Monitoring response to therapy with thallium-201 and technetium-99m-sestamibi SPECT in nasopharyngeal carcinoma. J Nucl Med 1997;38:1009–14PubMedGoogle Scholar
  75. 75.
    Maini CL, Tofani A, Sciuto R, Semprebene A, Cavaliere R, Mottolese M, et al. Technetium-99m-MIBI scintigraphy in the assessment of neoadjuvant chemotherapy in breast carcinoma. J Nucl Med 1997;38:1546–51PubMedGoogle Scholar
  76. 76.
    Ohira H, Kubota K, Ohuchi, Harada Y, Fukuda H, Satomi S. Comparison of intratumoral distribution of 99mTc-MIBI and deoxyglucose in mouse breast cancer models. J Nucl Med 2000;41:1561–8PubMedGoogle Scholar
  77. 77.
    Belhocine T, Steinmetz N, Green A, Blankenberg FG. The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 2004;3(1):23–32PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jean-Luc Moretti
    • 1
    • 4
  • Nathalie Hauet
    • 1
  • Meltem Caglar
    • 2
  • Olivier Rebillard
    • 1
  • Zeynep Burak
    • 3
  1. 1.UPRES 2360 Ciblage et Imagerie Fonctionnelle de la Progression TumoraleFaculté de MédecineBobignyFrance
  2. 2.Nuclear MedicineHacettepe UniversityAnkaraTurkey
  3. 3.Nuclear MedicineEge UniversityIzmirTurkey
  4. 4.Equipe Ciblage Fonctionnel et Prévention de la Progression Tumorale, UPRES 2360Université Paris 13, UFR SMBHBobignyFrance

Personalised recommendations