Advertisement

Cancer radioimmunotherapy with alpha-emitting nuclides

  • Olivier Couturier
  • Stéphane Supiot
  • Marie Degraef-Mougin
  • Alain Faivre-Chauvet
  • Thomas Carlier
  • Jean-François Chatal
  • François Davodeau
  • Michel Cherel
Review Article

Abstract

In lymphoid malignancies and in certain solid cancers such as medullary thyroid carcinoma, somewhat mixed success has been achieved when applying radioimmunotherapy (RIT) with β-emitters for the treatment of refractory cases. The development of novel RIT with α-emitters has created new opportunities and theoretical advantages due to the high linear energy transfer (LET) and the short path length in biological tissue of α-particles. These physical properties offer the prospect of achieving selective tumoural cell killing. Thus, RIT with α-emitters appears particularly suited for the elimination of circulating single cells or cell clusters or for the treatment of micrometastases at an early stage. However, to avoid non-specific irradiation of healthy tissues, it is necessary to identify accessible tumoural targets easily and rapidly. For this purpose, a small number of α-emitters have been investigated, among which only a few have been used for in vivo preclinical studies. Another problem is the availability and cost of these radionuclides; for instance, the low cost and the development of a reliable actinium-225/bismuth-213 generator were probably determining elements in the choice of bismuth-213 in the only human trial of RIT with an α-emitter. This article reviews the literature concerning monoclonal antibodies radiolabelled with α-emitters that have been developed for possible RIT in cancer patients. The principal radio-immunoconjugates are considered, starting with physical and chemical properties of α-emitters, their mode of production, the possibilities and difficulties of labelling, in vitro studies and finally, when available, in vivo preclinical and clinical studies.

Keywords

Radioimmunotherapy Radionuclides Alpha particles 

References

  1. 1.
    DeNardo SJ, DeNardo GL, O’Grady LF, et al. Treatment of B cell malignancies with 131I Lym-1 monoclonal antibodies. Int J Cancer Suppl 1988;3:96–101.Google Scholar
  2. 2.
    Kaminski MS, Fig LM, Zasadny KR, et al. Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol 1992;10:1696–711.Google Scholar
  3. 3.
    Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 1993;329:459–65.Google Scholar
  4. 4.
    Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience: imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. Blood 2000;96:1259–66.Google Scholar
  5. 5.
    Witzig TE, White CA, Wiseman GA, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol 1999;17:3793–803.Google Scholar
  6. 6.
    Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol 2002;20:3262–9.Google Scholar
  7. 7.
    Vuillez JP, Kraeber-Bodere F, Moro D, et al. Radioimmunotherapy of small cell lung carcinoma with the two-step method using a bispecific anti-carcinoembryonic antigen/anti-diethylenetriaminepentaacetic acid (DTPA) antibody and iodine-131 Di-DTPA hapten: results of a phase I/II trial. Clin Cancer Res 1999;5:3259–67s.Google Scholar
  8. 8.
    Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 2002;43:693–713.Google Scholar
  9. 9.
    Chatal J-F, Mahé M. Therapeutic use of radiolabeled antibodies. In: Murray IPC, Ell PJ, editors. Nuclear medicine in clinical diagnosis and treatment. Edinburgh: Churchill Livingstone; 1998.Google Scholar
  10. 10.
    Alvarez RD, Huh WK, Khazaeli MB, et al. A phase I study of combined modality (90)yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 2002;8:2806–11.Google Scholar
  11. 11.
    Mahe MA, Fumoleau P, Fabbro M, et al. A phase II study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin Cancer Res 1999;5:3249–53s.Google Scholar
  12. 12.
    Kraeber-Bodere F, Bardet S, Hoefnagel CA, et al. Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin Cancer Res 1999;5:3190–8s.Google Scholar
  13. 13.
    Kraeber-Bodere F, Faivre-Chauvet A, Sai-Maurel C, et al. Toxicity and efficacy of radioimmunotherapy in carcinoembryonic antigen-producing medullary thyroid cancer xenograft: comparison of iodine 131-labeled F(ab′)2 and pretargeted bivalent hapten and evaluation of repeated injections. Clin Cancer Res 1999;5:3183–9s.Google Scholar
  14. 14.
    Kraeber-Bodere F, Faibre-Chauvet A, Sai-Maurel C, et al. Bispecific antibody and bivalent hapten radioimmunotherapy in CEA-producing medullary thyroid cancer xenograft. J Nucl Med 1999;40:198–204.Google Scholar
  15. 15.
    Nikula TK, McDevitt MR, Finn RD, et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med 1999;40:166–76.Google Scholar
  16. 16.
    Raju MR, Eisen Y, Carpenter S, et al. Radiobiology of alpha-particles: part III. Cell inactivation by alpha-particle traversals of the cell nucleus. Radiat Res 1991;128:204–9.Google Scholar
  17. 17.
    Humm JL, Roeske JC, Fisher DR, et al. Microdosimetric concepts in radioimmunotherapy. Med Phys 1993;20:535–41.Google Scholar
  18. 18.
    Unak T. Some microdosimetric data on astatine-211. Appl Radiat Isotopes 2003;58:115–7.Google Scholar
  19. 19.
    Humm JL. A microdosimetric model of astatine-211 labeled antibodies for radioimmunotherapy. Int J Radiat Oncol Biol Phys 1987;13:1767–73.Google Scholar
  20. 20.
    Tung CJ, Liu CS, Wang JP, et al. Calculations of cellular microdosimetry parameters for alpha particles and electrons. Appl Radiat Isotopes 2004;61:739–43.Google Scholar
  21. 21.
    Stinchcomb TG, Roeske JC. Analytic microdosimetry for radioimmunotherapeutic alpha emitters. Med Phys 1992;19:1385–93.Google Scholar
  22. 22.
    Charlton DE. Radiation effects in spheroids of cells exposed to alpha emitters. Int J Radiat Biol 2000;76:1555–64.Google Scholar
  23. 23.
    Charlton DE. The survival of monolayers of cells growing in clusters irradiated by 211At appended to the cell surfaces. Radiat Res 1999;151:750–3.Google Scholar
  24. 24.
    Hamacher KA, Den RB, Den EI, et al. Cellular dose conversion factors for alpha-particle-emitting radionuclides of interest in radionuclide therapy. J Nucl Med 2001;42:1216–21.Google Scholar
  25. 25.
    Hamacher KA, Sgouros G. Theoretical estimation of absorbed dose to organs in radioimmunotherapy using radionuclides with multiple unstable daughters. Med Phys 2001;28:1857–74.Google Scholar
  26. 26.
    Hamacher KA, Sgouros G. A schema for estimating absorbed dose to organs following the administration of radionuclides with multiple unstable daughters: a matrix approach. Med Phys 1999;26:2526–8.Google Scholar
  27. 27.
    Chatal JF, Saccavini JC, Gestin JF, et al. Biodistribution of indium-111-labeled OC 125 monoclonal antibody intraperitoneally injected into patients operated on for ovarian carcinomas. Cancer Res 1989;49:3087–94.Google Scholar
  28. 28.
    Humm JL, Chin LM. A model of cell inactivation by alpha-particle internal emitters. Radiat Res 1993;134:143–50.Google Scholar
  29. 29.
    McDevitt MR, Sgouros G, Finn RD, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 1998;25:1341–51.Google Scholar
  30. 30.
    Yao Z, Garmestani K, Wong KJ, et al. Comparative cellular catabolism and retention of astatine-, bismuth-, and lead-radiolabeled internalizing monoclonal antibody. J Nucl Med 2001;42:1538–44.Google Scholar
  31. 31.
    Smit JA, Myburgh JA, Neirinckx RD. Specific inactivation of sensitized lymphocytes in vitro using antigens labelled with astatine-211. Clin Exp Immunol 1973;14:107–16.Google Scholar
  32. 32.
    Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des 2000;6:1433–55.Google Scholar
  33. 33.
    Zalutsky MR, Zhao XG, Alston KL, et al. High-level production of alpha-particle-emitting 211At and preparation of 211At-labeled antibodies for clinical use. J Nucl Med 2001;42:1508–15.Google Scholar
  34. 34.
    Zalutsky MR, Bigner DD. Radioimmunotherapy with alpha-particle emitting radioimmunoconjugates. Acta Oncol 1996;35:373–9.Google Scholar
  35. 35.
    Johnson EL, Turkington TG, Jaszczak RJ, et al. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol 1995;22:45–54.Google Scholar
  36. 36.
    Larsen RH, Murud KM, Akabani G, et al. 211At- and 131I-labeled bisphosphonates with high in vivo stability and bone accumulation. J Nucl Med 1999;40:1197–203.Google Scholar
  37. 37.
    Larsen RH, Wieland BW, Zalutsky MR. Evaluation of an internal cyclotron target for the production of 211At via the 209Bi (alpha,2n)211At reaction. Appl Radiat Isotopes 1996;47:135–43.Google Scholar
  38. 38.
    Zalutsky MR, Narula AS. Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate. Int J Radiat Appl Instrum A 1988;39:227–32.Google Scholar
  39. 39.
    Zalutsky MR, Garg PK, Friedman HS, et al. Labeling monoclonal antibodies and F(ab′)2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity. Proc Natl Acad Sci U S A 1989;86:7149–53.Google Scholar
  40. 40.
    Bloomer WD, McLaughlin WH, Neirinckx RD, et al. Astatine-211-tellurium radiocolloid cures experimental malignant ascites. Science 1981;212:340–1.Google Scholar
  41. 41.
    Brown I, Carpenter RN, Mitchell JS. The development of A [211At]-astatinated endoradiotherapeutic drug: part I. Localization by alpha-particle autoradiography in a murine tumor model. Int J Radiat Oncol Biol Phys 1992;23:563–72.Google Scholar
  42. 42.
    Brown I, Mitchell JS. The development of a [211At]-astatinated endoradiotherapeutic drug: part II. Therapeutic results for transplanted adenocarcinoma of the rectum in mice and associated studies. Int J Radiat Oncol Biol Phys 1994;29:115–24.Google Scholar
  43. 43.
    Link EM. Targeting melanoma with 211At/131I-methylene blue: preclinical and clinical experience. Hybridoma 1999;18:77–82.Google Scholar
  44. 44.
    Vaidyanathan G, Zalutsky MR. 1-(m-[211At]astatobenzyl)guanidine: synthesis via astato demetalation and preliminary in vitro and in vivo evaluation. Bioconjug Chem 1992;3:499–503.Google Scholar
  45. 45.
    Vaidyanathan G, Larsen RH, Zalutsky MR. 5-[211At]astato-2′-deoxyuridine, an alpha particle-emitting endoradiotherapeutic agent undergoing DNA incorporation. Cancer Res 1996;56:1204–9.Google Scholar
  46. 46.
    Foulon CF, Alston KL, Zalutsky MR. Astatine-211-labeled biotin conjugates resistant to biotinidase for use in pretargeted radioimmunotherapy. Nucl Med Biol 1998;25:81–8.Google Scholar
  47. 47.
    Murud KM, Larsen RH, Bruland OS, et al. Influence of pretreatment with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (APB) on organ uptake of 211At and 125I-labeled amidobisphosphonates in mice. Nucl Med Biol 1999;26:791–4.Google Scholar
  48. 48.
    Murud KM, Larsen RH, Hoff P, et al. Synthesis, purification, and in vitro stability of 211At- and 125I-labeled amidobisphosphonates. Nucl Med Biol 1999;26:397–403.Google Scholar
  49. 49.
    Wilbur DS, Vessella RL, Stray JE, et al. Preparation and evaluation of para-[211At]astatobenzoyl labeled anti-renal cell carcinoma antibody A6H F(ab′)2. In vivo distribution comparison with para-[125I]iodobenzoyl labeled A6H F(ab′)2. Nucl Med Biol 1993;20:917–27.Google Scholar
  50. 50.
    Larsen RH, Bruland OS. Intratumour injection of immunoglobulins labelled with the alpha-particle emitter 211At: analyses of tumour retention, microdistribution and growth delay. Br J Cancer 1998;77:1115–22.Google Scholar
  51. 51.
    Aurlien E, Larsen RH, Kvalheim G, et al. Demonstration of highly specific toxicity of the alpha-emitting radioimmunoconjugate 211At-rituximab against non-Hodgkin’s lymphoma cells. Br J Cancer 2000;83:1375–9.Google Scholar
  52. 52.
    Yordanov AT, Garmestani K, Zhang M, et al. Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac. Nucl Med Biol 2001;28:845–56.Google Scholar
  53. 53.
    Strickland DK, Vaidyanathan G, Zalutsky MR. Cytotoxicity of alpha-particle-emitting m-[211At]astatobenzylguanidine on human neuroblastoma cells. Cancer Res 1994;54:5414–9.Google Scholar
  54. 54.
    Larsen RH, Akabani G, Welsh P, et al. The cytotoxicity and microdosimetry of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro. Radiat Res 1998;149:155–62.Google Scholar
  55. 55.
    Walicka MA, Vaidyanathan G, Zalutsky MR, et al. Survival and DNA damage in Chinese hamster V79 cells exposed to alpha particles emitted by DNA-incorporated astatine-211. Radiat Res 1998;150:263–8.Google Scholar
  56. 56.
    Zalutsky MR, Schuster JM, Garg PK, et al. Two approaches for enhancing radioimmunotherapy: alpha emitters and hyperthermia. Recent Results Cancer Res 1996;141:101–22.Google Scholar
  57. 57.
    Hauck ML, Larsen RH, Welsh PC, et al. Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia. Br J Cancer 1998;77:753–9.Google Scholar
  58. 58.
    Harrison A, Royle L. Efficacy of astatine-211-labeled monoclonal antibody in treatment of murine T-cell lymphoma. NCI Monogr 1987;157–8.Google Scholar
  59. 59.
    Zalutsky MR, McLendon RE, Garg PK, et al. Radioimmunotherapy of neoplastic meningitis in rats using an alpha-particle-emitting immunoconjugate. Cancer Res 1994;54:4719–25.Google Scholar
  60. 60.
    Andersson H, Palm S, Lindegren S, et al. Comparison of the therapeutic efficacy of 211At- and 131I-labelled monoclonal antibody MOv18 in nude mice with intraperitoneal growth of human ovarian cancer. Anticancer Res 2001;21:409–12.Google Scholar
  61. 61.
    Zalutsky MR, Cokgor I, Akabani G, et al. Phase I trial of alpha-particle-emitting astatine-211 labeled chimeric antitenascin antibody in recurrent malignant glioma patients. Proc Am Assoc Cancer Res 2000;41:54.Google Scholar
  62. 62.
    Atcher RW, Friedman AM, Hines JJ. An improved generator for the production of 212Pb and 212Bi from 224Ra. Int J Radiat Appl Instrum A 1988;39:283–6.Google Scholar
  63. 63.
    Kozak RW, Atcher RW, Gansow OA, et al. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc Natl Acad Sci U S A 1986;83:474–8.Google Scholar
  64. 64.
    Brechbiel MW, Gansow OA. Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepentaacetic acids for labeling of monoclonal antibodies with the bismuth-212-α-particle emitter. J Chem Soc Perkin Trans 1992;1:1173–8.Google Scholar
  65. 65.
    Macklis RM, Lin JY, Beresford B, et al. Cellular kinetics, dosimetry, and radiobiology of alpha-particle radioimmunotherapy: induction of apoptosis. Radiat Res 1992;130:220–6.Google Scholar
  66. 66.
    Huneke RB, Pippin CG, Squire RA, et al. Effective alpha-particle-mediated radioimmunotherapy of murine leukemia. Cancer Res 1992;52:5818–20.Google Scholar
  67. 67.
    Ruegg CL, Anderson-Berg WT, Brechbiel MW, et al. Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res 1990;50:4221–6.Google Scholar
  68. 68.
    Junghans RP, Dobbs D, Brechbiel MW, et al. Pharmacokinetics and bioactivity of 1,4,7,10-tetra-azacyclododecane off′,N″,N‴-tetraacetic acid (DOTA)-bismuth-conjugated anti-Tac antibody for alpha-emitter (212Bi) therapy. Cancer Res 1993;53:5683–9.Google Scholar
  69. 69.
    Macklis RM, Kinsey BM, Kassis AI, et al. Radioimmunotherapy with alpha-particle-emitting immunoconjugates. Science 1988;240:1024–6.Google Scholar
  70. 70.
    Macklis RM, Kaplan WD, Ferrara JL, et al. Alpha particle radio-immunotherapy: animal models and clinical prospects. Int J Radiat Oncol Biol Phys 1989;16:1377–87.Google Scholar
  71. 71.
    Hartmann F, Horak EM, Garmestani K, et al. Radioimmunotherapy of nude mice bearing a human interleukin 2 receptor alpha-expressing lymphoma utilizing the alpha-emitting radionuclide-conjugated monoclonal antibody 212Bi-anti-Tac. Cancer Res 1994;54:4362–70.Google Scholar
  72. 72.
    Scheinberg DA, Strand M. Leukemic cell targeting and therapy by monoclonal antibody in a mouse model system. Cancer Res 1982;42:44–9.Google Scholar
  73. 73.
    Scheinberg DA, Strand M. Kinetic and catabolic considerations of monoclonal antibody targeting in erythroleukemic mice. Cancer Res 1983;43:265–72.Google Scholar
  74. 74.
    Simonson RB, Ultee ME, Hauler JA, et al. Radioimmunotherapy of peritoneal human colon cancer xenografts with site-specifically modified 212Bi-labeled antibody. Cancer Res 1990;50:985–8s.Google Scholar
  75. 75.
    Rotmensch J, Roeske J, Chen G, et al. Estimates of dose to intraperitoneal micrometastases from alpha and beta emitters in radioimmunotherapy. Gynecol Oncol 1990;38:478–85.Google Scholar
  76. 76.
    Rotmensch J, Schwartz JL, Atcher RW, et al. Increased nuclear damage by high linear energy transfer radioisotopes applicable for radiodirected therapy against radiologic malignancies. Gynecol Obstet Investig 1991;32:180–4.Google Scholar
  77. 77.
    Rotmensch J, Whitlock JL, Schwartz JL, et al. In vitro and in vivo studies on the development of the alpha-emitting radionuclide bismuth 212 for intraperitoneal use against microscopic ovarian carcinoma. Am J Obstet Gynecol 1997;176:833–40; discussion 840–1.Google Scholar
  78. 78.
    Horak E, Hartmann F, Garmestani K, et al. Radioimmunotherapy targeting of HER2/neu oncoprotein on ovarian tumor using lead-212-DOTA-AE1. J Nucl Med 1997;38:1944–50.Google Scholar
  79. 79.
    Kaspersen FM, Bos E, Doornmalen AV, et al. Cytotoxicity of 213Bi- and 225Ac-immunoconjugates. Nucl Med Commun 1995;16:468–76.Google Scholar
  80. 80.
    Geerlings MW, Kaspersen FM, Apostolidis C, et al. The feasibility of 225Ac as a source of alpha-particles in radioimmunotherapy. Nucl Med Commun 1993;14:121–5.Google Scholar
  81. 81.
    Geerlings MW. Radionuclides for radioimmunotherapy: criteria for selection. Int J Biol Markers 1993;8:180–6.Google Scholar
  82. 82.
    Davis IA, Glowienka KA, Boll RA, et al. Comparison of 225-actinium chelates: tissue distribution and radiotoxicity. Nucl Med Biol 1999;26:581–9.Google Scholar
  83. 83.
    Chappell LL, Deal KA, Dadachova E, et al. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for 225Ac radioimmunotherapy applications. Bioconjug Chem 2000;11:510–9.Google Scholar
  84. 84.
    McDevitt MR, Ma D, Lai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science 2001;294:1537–40.Google Scholar
  85. 85.
    Kennel SJ, Chappell LL, Dadachova K, et al. Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors. Cancer Biother Radiopharm 2000;15:235–44.Google Scholar
  86. 86.
    Kennel SJ, Brechbiel MW, Milenic DE, et al. Actinium-225 conjugates of MAb CC49 and humanized delta CH2CC49. Cancer Biother Radiopharm 2002;17:219–31.Google Scholar
  87. 87.
    Ballangrud AM, Yang WH, Palm S, et al. Alpha-particle emitting atomic generator (actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression. Clin Cancer Res 2004;10:4489–97.Google Scholar
  88. 88.
    Borchardt PE, Yuan RR, Miederer M, et al. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res 2003;63:5084–90.Google Scholar
  89. 89.
    Miederer M, McDevitt MR, Sgouros G, et al. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med 2004;45:129–37.Google Scholar
  90. 90.
    Miederer M, McDevitt MR, Borchardt P, et al. Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of alpha-emitting atomic nanogenerators targeting disialo-ganglioside GD2. Clin Cancer Res 2004;10:6985–92.Google Scholar
  91. 91.
    Sgouros G, Ballangrud AM, Jurcic JG, et al. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med 1999;40:1935–46.Google Scholar
  92. 92.
    McDevitt MR, Finn RD, Ma D, et al. Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use. J Nucl Med 1999;40:1722–7.Google Scholar
  93. 93.
    Finn RD, McDevitt MR, Scheinberg DA. Refinements and improvements for Bi-213 production and use as a targeted therapeutic radiopharmaceutical. J Label Compd Radiopharm 1997;40:293.Google Scholar
  94. 94.
    Ma D, McDevitt MR, Finn RD, et al. Breakthrough of 225Ac and its radionuclide daughters from an 225Ac/213Bi generator: development of new methods, quantitative characterization, and implications for clinical use. Appl Radiat Isotopes 2001;55:667–78.Google Scholar
  95. 95.
    Ma D, McDevitt MR, Finn RD, et al. Rapid preparation of short-lived alpha particle emitting radioimmunopharmaceuticals. Appl Radiat Isotopes 2001;55:463–70.Google Scholar
  96. 96.
    Jurcic JG, Scheinberg DA, Houghton AN. Monoclonal antibody therapy of cancer. Cancer Chemother Biol Response Modif Annu 1997;17:195–216.Google Scholar
  97. 97.
    Jurcic JG, Caron PC, Nikula TK, et al. Radiolabeled anti-CD33 monoclonal antibody M195 for myeloid leukemias. Cancer Res 1995;55:5908–10s.Google Scholar
  98. 98.
    Ballangrud AM, Yang WH, Charlton DE, et al. Response of LNCaP spheroids after treatment with an alpha-particle emitter (213Bi)-labeled anti-prostate-specific membrane antigen antibody (J591). Cancer Res 2001;61:2008–14.Google Scholar
  99. 99.
    Vandenbulcke K, De Vos F, Offner F, et al. In vitro evaluation of 213Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage. Eur J Nucl Med Mol Imaging 2003;3:3.Google Scholar
  100. 100.
    Abbas Rizvi SM, Henniker AJ, Goozee G, et al. In vitro testing of the leukaemia monoclonal antibody WM-53 labeled with alpha and beta emitting radioisotopes. Leuk Res 2002;26:37–43.Google Scholar
  101. 101.
    Mishra AK, Iznaga-Escobar N, Figueredo R, et al. Preparation and comparative evaluation of 99mTc-labeled 2-iminothiolane modified antibodies and CITC-DTPA immunoconjugates of anti-EGF-receptor antibodies. Methods Find Exp Clin Pharmacol 2002;24:653–60.Google Scholar
  102. 102.
    Brechbiel MW, Gansow OA, Atcher RW, et al. Synthesis of 1-(p-Isothiocyanatobenzyl) Derivatives of DTPA and EDTA. Inorg Chem 1986;25:2772–81.Google Scholar
  103. 103.
    de The H, Chomienne C, Lanotte M, et al. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990;347:558–61.Google Scholar
  104. 104.
    Kakizuka A, Miller WH Jr, Umesono K, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991;66:663–74.Google Scholar
  105. 105.
    Caron PC, Co MS, Bull MK, et al. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 1992;52:6761–7.Google Scholar
  106. 106.
    Scheinberg DA, Tanimoto M, McKenzie S, et al. Monoclonal antibody M195: a diagnostic marker for acute myelogenous leukemia. Leukemia 1989;3:440–5.Google Scholar
  107. 107.
    Tanimoto M, Scheinberg DA, Cordon-Cardo C, et al. Restricted expression of an early myeloid and monocytic cell surface antigen defined by monoclonal antibody M195. Leukemia 1989;3:339–48.Google Scholar
  108. 108.
    Sabbath KD, Ball ED, Larcom P, et al. Heterogeneity of clonogenic cells in acute myeloblastic leukemia. J Clin Invest 1985;75:746–53.Google Scholar
  109. 109.
    Caron PC, Jurcic JG, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood 1994;83:1760–8.Google Scholar
  110. 110.
    Co MS, Avdalovic NM, Caron PC, et al. Chimeric and humanized antibodies with specificity for the CD33 antigen. J Immunol 1992;148:1149–54.Google Scholar
  111. 111.
    McDevitt MR, Barendswaard E, Ma D, et al. An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res 2000;60:6095–100.Google Scholar
  112. 112.
    Supiot S, Faivre-Chauvet A, Couturier O, et al. Comparison of the biologic effects of MA5 and B-B4 monoclonal antibody labeled with iodine-131 and bismuth-213 on multiple myeloma. Cancer 2002;94:1202–9.Google Scholar
  113. 113.
    Couturier O, Faivre-Chauvet A, Filippovich IV, et al. Validation of 213Bi-alpha radioimmunotherapy for multiple myeloma. Clin Cancer Res 1999;5:3165–70s.Google Scholar
  114. 114.
    Allen BJ, Rizvi S, Li Y, et al. In vitro and preclinical targeted alpha therapy for melanoma, breast, prostate and colorectal cancers. Crit Rev Oncol/Hematol 2001;39:139–46.Google Scholar
  115. 115.
    Allen BJ, Raja C, Rizvi S, et al. Targeted alpha therapy for cancer. Phys Med Biol 2004;49:3703–12.Google Scholar
  116. 116.
    Vandenbulcke K, Thierens H, Offner F, et al. Importance of receptor density in alpha radioimmunotherapy in B cell malignancies: an in-vitro study. Nucl Med Commun 2004;25:1131–6.Google Scholar
  117. 117.
    Rizvi SM, Allen BJ, Tian Z, et al. In vitro and preclinical studies of targeted alpha therapy (TAT) for colorectal cancer. Colorectal Dis 2001;3:345–53.Google Scholar
  118. 118.
    Kennel SJ, Mirzadeh S. Vascular targeted radioimmunotherapy with 213Bi—an alpha-particle emitter. Nucl Med Biol 1998;25:241–6.Google Scholar
  119. 119.
    Davis IA, Kennel SJ. Radioimmunotherapy using vascular targeted 213Bi: the role of tumor necrosis factor alpha in the development of pulmonary fibrosis. Clin Cancer Res 1999;5:3160–4s.Google Scholar
  120. 120.
    Kennel SJ, Boll R, Stabin M, et al. Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi. Br J Cancer 1999;80:175–84.Google Scholar
  121. 121.
    Kennel SJ, Stabin M, Yoriyaz H, et al. Treatment of lung tumor colonies with 90Y targeted to blood vessels: comparison with the alpha-particle emitter 213Bi. Nucl Med Biol 1999;26:149–57.Google Scholar
  122. 122.
    Kennel SJ, Davis IA, Branning J, et al. High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med Phys 2000;27:1101–7.Google Scholar
  123. 123.
    Huber R, Seidl C, Schmid E, et al. Locoregional alpha-radioimmunotherapy of intraperitoneal tumor cell dissemination using a tumor-specific monoclonal antibody. Clin Cancer Res 2003;9:3922–8S.Google Scholar
  124. 124.
    Senekowitsch-Schmidtke R, Schuhmacher C, Becker KF, et al. Highly specific tumor binding of a 213Bi-labeled monoclonal antibody against mutant E-cadherin suggests its usefulness for locoregional alpha-radioimmunotherapy of diffuse-type gastric cancer. Cancer Res 2001;61:2804–8.Google Scholar
  125. 125.
    Milenic D, Garmestani K, Dadachova E, et al. Radioimmunotherapy of human colon carcinoma xenografts using a 213Bi-labeled domain-deleted humanized monoclonal antibody. Cancer Biother Radiopharm 2004;19:135–47.Google Scholar
  126. 126.
    Nielsen UB, Adams GP, Weiner LM, et al. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res 2000;60:6434–40.Google Scholar
  127. 127.
    Adams GP, Shaller CC, Chappell LL, et al. Delivery of the alpha-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl Med Biol 2000;27:339–46.Google Scholar
  128. 128.
    Zhang M, Yao Z, Garmestani K, et al. Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood 2002;100:208–16.Google Scholar
  129. 129.
    Yao Z, Zhang M, Garmestani K, et al. Pretargeted alpha emitting radioimmunotherapy using 213Bi 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid-biotin. Clin Cancer Res 2004;10:3137–46.Google Scholar
  130. 130.
    Jurcic JG. Antibody therapy for residual disease in acute myelogenous leukemia. Crit Rev Oncol/Hematol 2001;38:37–45.Google Scholar
  131. 131.
    Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002;100:1233–9.Google Scholar
  132. 132.
    Scheinberg DA, Lovett D, Divgi CR, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 1991;9:478–90.Google Scholar
  133. 133.
    Schwartz MA, Lovett DR, Redner A, et al. Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol 1993;11:294–303.Google Scholar
  134. 134.
    Jurcic JG, DeBlasio T, Dumont L, et al. Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Clin Cancer Res 2000;6:372–80.Google Scholar
  135. 135.
    Caron PC, Dumont L, Scheinberg DA. Supersaturating infusional humanized anti-CD33 monoclonal antibody HuM195 in myelogenous leukemia. Clin Cancer Res 1998;4:1421–8.Google Scholar
  136. 136.
    Mausner LF, Straub RE, Srivastava SC. The “in vivo” generator for radioimmunotherapy. J Label Compd Radiopharm 1989;26:177–8.Google Scholar
  137. 137.
    Ruble G, Wu C, Squire RA, et al. The use of 212Pb-labeled monoclonal antibody in the treatment of murine erythroleukemia. Int J Radiat Oncol Biol Phys 1996;34:609–16.Google Scholar
  138. 138.
    Atcher RW, Friedman AM, Huizenga JR, et al. A radionuclide generator for the production of Pb-211 and its daughters. J Radioanal Nucl Chem 1989;135:215–21.Google Scholar
  139. 139.
    Henriksen G, Schoultz BW, Michaelsen TE, et al. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol 2004;31:441–9.Google Scholar
  140. 140.
    Allen BJ, Blagojevic N. Alpha- and beta-emitting radiolanthanides in targeted cancer therapy: the potential role of terbium-149. Nucl Med Commun 1996;17:40–7.Google Scholar
  141. 141.
    Miederer M, Seidl C, Beyer GJ, et al. Comparison of the radiotoxicity of two alpha-particle-emitting immunoconjugates, terbium-149 and bismuth-213, directed against a tumor-specific, exon 9 deleted (d9) E-cadherin adhesion protein. Radiat Res 2003;159:612–20.Google Scholar
  142. 142.
    Beyer GJ, Miederer M, Vranjes-Duric S, et al. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur J Nucl Med Mol Imaging 2004;31:547–54.Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Olivier Couturier
    • 1
    • 2
  • Stéphane Supiot
    • 1
  • Marie Degraef-Mougin
    • 1
  • Alain Faivre-Chauvet
    • 1
  • Thomas Carlier
    • 1
  • Jean-François Chatal
    • 1
  • François Davodeau
    • 1
  • Michel Cherel
    • 1
  1. 1.INSERM U 601NantesFrance
  2. 2.Department of Nuclear MedicinePlace Alexis RicordeauNantesFrance

Personalised recommendations