EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology

  • B. HesseEmail author
  • K. Tägil
  • A. Cuocolo
  • C. Anagnostopoulos
  • M. Bardiés
  • J. Bax
  • F. Bengel
  • E. Busemann Sokole
  • G. Davies
  • M. Dondi
  • L. Edenbrandt
  • P. Franken
  • A. Kjaer
  • J. Knuuti
  • M. Lassmann
  • M. Ljungberg
  • C. Marcassa
  • P. Y. Marie
  • F. McKiddie
  • M. O’Connor
  • E. Prvulovich
  • R. Underwood
  • B. van Eck-Smit


The European procedural guidelines for radionuclide imaging of myocardial perfusion and viability are presented in 13 sections covering patient information, radiopharmaceuticals, injected activities and dosimetry, stress tests, imaging protocols and acquisition, quality control and reconstruction methods, gated studies and attenuation-scatter compensation, data analysis, reports and image display, and positron emission tomography. If the specific recommendations given could not be based on evidence from original, scientific studies, we tried to express this state-of-art. The guidelines are designed to assist in the practice of performing, interpreting and reporting myocardial perfusion SPET. The guidelines do not discuss clinical indications, benefits or drawbacks of radionuclide myocardial imaging compared to non-nuclear techniques, nor do they cover cost benefit or cost effectiveness.


Positron Emission Tomography Myocardial Perfusion Myocardial Perfusion Imaging Dobutamine Nuclear Cardiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Attenuation compensation (attenuation correction)


Advanced life support


Centre of rotation


Diagnostic reference levels


Ejection fraction


Filtered back-projection




Full-width at half-maximum


Low-energy, all-purpose (collimator)


Low-energy general-purpose (collimator)


Low-energy high-resolution (collimator)


Left ventricular


Left ventricular ejection fraction


Maximum likelihood expectation maximisation


National Electrical Manufacturers Association


Ordered subsets expectation maximisation


Premature ventricular contractions


Quality control

SA block

Sinoatrial block


Summed difference score


Summed rest score


Summed stress score



We wish to thank the European Association of Nuclear Medicine for financial support. We thank the European Council of Nuclear Cardiology for support and national European societies of nuclear medicine and cardiology for helpful information. The group is grateful to Jenny Sandgren for her devoted efforts with secretarial assistance.


  1. 1.
    Anagnostopoulos C, Harbinson M, Kelion A, Kundley K, Loong CY, Notghi A, et al. Procedure guidelines for radionuclide myocardial perfusion imaging. Heart 2004;90 Suppl 1:i1–10.CrossRefPubMedGoogle Scholar
  2. 2.
    ESC Guidelines for exercise testing.Google Scholar
  3. 3.
    American guidelines (the ACC/AHA exercise testing guidelines).Google Scholar
  4. 4.
    Society of Nuclear Medicine procedure guideline for myocardial perfusion imaging.Google Scholar
  5. 5.
    American Society of Nuclear Cardiology: imaging guidelines for nuclear cardiology procedures.Google Scholar
  6. 6.
    Grunwald AM, Watson DD, Holzgrefe HH Jr, Irving JF, Beller GA. Myocardial thallium-201 kinetics in normal and ischaemic myocardium. Circulation 1981;64:610–8.PubMedGoogle Scholar
  7. 7.
    Ingwall JS, Kramer M, Kloner NM, et al. Thallium accumulation: differentiation between reversible and irreversible myocardial injury. Circulation 1979;59:678. (abstract).Google Scholar
  8. 8.
    Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischaemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med1990;323:141–6.PubMedGoogle Scholar
  9. 9.
    van Eck-Smit BL, van der Wall EE, Zwinderman AH, Pauwels EK. Clinical value of immediate thallium-201 reinjection imaging for the detection of ischaemic heart disease. Eur Heart J 1995;16:410–20.PubMedGoogle Scholar
  10. 10.
    Li QS, Solot G, Frank TL, Wagner HNJ, Becker LC. Myocardial redistribution of technetium-99m-methoxyisobutyl isonitrile (SESTAMIBI). J Nucl Med 1990;31:1069–76.PubMedGoogle Scholar
  11. 11.
    Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 1993;34:1254–9.PubMedGoogle Scholar
  12. 12.
    Münch G, Neverve J, Matsunari I, Schröter G, Schwaiger M. Myocardial technetium-99m-tetrofosmin and technetium-99m-sestamibi kinetics in normal subjects and patients with coronary artery disease. J Nucl Med 1997;38:428–32.PubMedGoogle Scholar
  13. 13.
    Maurea S, Cuocolo A, Soricelli A, Castelli L, Nappi A, Squame F, et al. Enhanced detection of viable myocardium by technetium-99m-MIBI imaging after nitrate administration in chronic coronary artery disease. J Nucl Med 1995;36:1945–52.PubMedGoogle Scholar
  14. 14.
    Thorley PJ, Bloomer TN, Sheard KL, Sivananthan UM. The use of GTN to improve the detection of ischaemic myocardium using Tc-99m-tetrofosmin. Nucl Med Commun 1996;17:669–74.PubMedGoogle Scholar
  15. 15.
    Vanzetto G, Fagret D, Pasqualini R, Mathieu JP, Chossat F, Machecourt J. Biodistribution, dosimetry, and safety of myocardial perfusion imaging agent 99mTcN-NOET in healthy volunteers. J Nucl Med 2000;41:141–8.PubMedGoogle Scholar
  16. 16.
    Cuocolo A, Rubini G, Acampa W, Nicolai E, Florimonte L, DiGiovine G, et al. Technetium 99m furifosmin regional myocardial uptake in patients with previous myocardial infarction: relation to thallium-201 activity and left ventricular function. J Nucl Cardiol 2000;7:235–41.CrossRefPubMedGoogle Scholar
  17. 17.
    [CD97] Council Directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Official J Eur Commun 1997; L 180:22–7.Google Scholar
  18. 18.
    Heo J, Powers J, Iskandrian AE. Exercise–rest same-day SPECT sestamibi imaging to detect coronary artery disease. J Nucl Med 1997;38:200–3.PubMedGoogle Scholar
  19. 19.
    Garcia EV, Cooke CD, Van Train KF, Folks R, Peifer J, DePuey EG, et al. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 1990;66:23E–31E.CrossRefPubMedGoogle Scholar
  20. 20.
    ICRP Publication 80. Radiation dose to patients from radiopharmaceuticals. Annals of ICRP, 28. Oxford: Pergamon Press; 1998. p. 3.Google Scholar
  21. 21.
    ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals. Annals of ICRP, 18. Oxford: Pergamon Press; 1987. p. 1–4.Google Scholar
  22. 22.
    ICRP Publication 60. 1990 Recommendations of the ICRP. Annals of ICRP, 21. Oxford: Pergamon Press; 1992. p. 1–3.Google Scholar
  23. 23.
    Piepsz A, Hahn K, Roca I, Ciofetta G, Toth G, Gordon I, et al. A radiopharmaceuticals schedule for imaging in paediatrics. Paediatric Task Group European Association Nuclear Medicine. Eur J Nucl Med 1990;17(3–4):127–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Strahlenschutzkommission. Strahlenexposition von Personen durch uklearmedizinisch untersuchte Patienten. In: Gumprecht D, Heller H, editors. Empfehlungen und Stellungnahmen der Strahlenschutzkommission 1998, Bonn. 1999Google Scholar
  25. 25.
    Radiation Protection 100. Guidance for protection of unborn children and infants irradiated due to parental medical exposures. European Commission on-line publication catalogue 1998, nuclear.htm#100
  26. 26.
    Clinical competence statement on exercise stress testing. AHA/ACC Task Force Report. J Am Coll Cardiol 2000;36:1441–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Guidelines for clinical use of cardiac radionuclide imaging. AHA/ACC Task Force Report. Circulation 1995;91:1278–1303.PubMedGoogle Scholar
  28. 28.
    Guidelines for exercise stress testing. AHA/ACC Task Force Report. J Am Coll Cardiol 1997;30:260–315.CrossRefPubMedGoogle Scholar
  29. 29.
    Pennell DJ, Mavrogeni SI, Forbat SM, Karwatowski SP, Underwood SR. Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol 1995;25:1300–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Samady H, Wackers FJ, Joska T, Zaret B, Jain D. Pharmacologic stress perfusion imaging with adenosine: role of simultaneous low-level treadmill exercise. J Nucl Cardiol 2002;9:188–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Thomas GS, Prill NV, Majmundar H, Fabrizi RR, Thomas JJ, Hayashida C, et al. Treadmill exercise during adenosine infusion is safe, results in fewer adverse reactions, and improves myocardial perfusion image quality. J Nucl Cardiol 2000;7:439–46.CrossRefPubMedGoogle Scholar
  32. 32.
    Treuth MG, Reyes GA, He ZX, Cwajg E, Mahmarian JJ, Verani MS. Tolerance and diagnostic accuracy of an abbreviated adenosine infusion for myocardial scintigraphy: a randomized prospective study. J Nucl Cardiol 2001;8:548–54.CrossRefPubMedGoogle Scholar
  33. 33.
    Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging; results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol 1994;23:384–90.PubMedGoogle Scholar
  34. 34.
    Lette J, Tatum JL, Fraser S, Miller DD, Waters DD, Heller G, et al. Safety of dipyridamole testing in 73,806 patients: the Multicenter Dipyridamole Safety study. J Nucl Cardiol 1994;2:3–17.PubMedGoogle Scholar
  35. 35.
    McNeill AJ, Fioretti PM, el-Said SM, Salustri A, Forster T, Roelandt JR. Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine stress echocardiography. Am J Cardiol 1992;70:41–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Hicks RJ. Myocardial perfusion scintigraphy techniques using single photon radiotracers. In: Murray E, editor. Nuclear medicine in diagnosis and treatment. 2nd ed. New York: Churchill Livingstone; 1998. p. 1333–51.Google Scholar
  37. 37.
    Rocco TP, Dilsizian V, McKusick KA, Fischman AJ, Boucher CA, Strauss HW. Comparison of thallium redistribution with rest “reinjection” imaging for detection of viable myocardium. Am J Cardiol 1990;66:158–63.CrossRefPubMedGoogle Scholar
  38. 38.
    Heo J, Kegel J, Iskandrian AS, Cave V, Iskandrian BB. Comparison of same-day protocols using technetium-99m-sestamibi myocardial imaging. J Nucl Med 1992;33:186–91.PubMedGoogle Scholar
  39. 39.
    van Dongen AJ, van Rijk PP. Minimizing liver, bowel, and gastric activity in myocardial perfusion SPECT. J Nucl Med 2000;41:1315–7.PubMedGoogle Scholar
  40. 40.
    Hurwitz GA, Clark EM, Slomka PJ, Siddiq SK. Investigation of measures to reduce interfering abdominal activity on rest myocardial images with Tc-99m sestamibi. Clin Nucl Med 1993;18:735–41.PubMedGoogle Scholar
  41. 41.
    Berman DS, Kiat HS, Van Train KF, Germano G, Maddahi J, Friedman JD. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of available imaging protocols. J Nucl Med 1994;35 4:681–8.PubMedGoogle Scholar
  42. 42.
    Segall GM, Davis MJ. Prone versus supine thallium myocardial SPECT: a method to decrease artefactual inferior wall defects. J Nucl Med 1989;30:548–55.PubMedGoogle Scholar
  43. 43.
    Strauss HW, Miller DD, Wittry MD, Cerqueira MD, Garcia EV, Iskandrian AS, et al. Procedure guideline for myocardial perfusion imaging. Society of Nuclear Medicine. J Nucl Med 1998;39:918–23.PubMedGoogle Scholar
  44. 44.
    Eisner RL, Nowak DJ, Pettigrew R, Fajman W. Fundamentals of 180-degree acquisition and reconstruction in SPECT imaging. J Nucl Med 1986;27:1717–28.PubMedGoogle Scholar
  45. 45.
    DePuey EG, Garcia E, Borges-Neto S, Jain D, Fiacro E, Nichols K, et al. Updated imaging guidelines for nuclear cardiology procedures, part 1. J Nucl Cardiol 2001;8:G1–58.CrossRefGoogle Scholar
  46. 46.
    IAEA TECDOC-602. Quality control of nuclear medicine instruments 1991. ISSN 1011–4289, International Atomic Energy Agency, Vienna.Google Scholar
  47. 47.
    Society of nuclear medicine procedure guideline for general imaging, version 2.0. Society of Nuclear Medicine (, 1999.
  48. 48.
    Report 86 Quality control of gamma camera systems In: Bolster A, editor. Institute of Physics in Engineering and Medicine, 2003. ISBN 1 903613 13 2.Google Scholar
  49. 49.
    O’Connor MK, Hung JCY. Instrumentation quality control. In: O’Connor MK, editor. Mayo Clinic manual of nuclear medicine. New York: Churchill Livingstone; 1996. p. 1–57.Google Scholar
  50. 50.
    IAEA quality control atlas for scintillation systems (compiler/author: E. Busemann Sokole). ISBN 92-0-101303-5. International Atomic Energy Agency, Vienna, 2003.Google Scholar
  51. 51.
    NEMA NU1-2001 Performance measurements of scintillation cameras. Standards publication, National Electrical Manufacturer’s Association, 2001.Google Scholar
  52. 52.
    Busemann Sokole E. Measurement of collimator hole angulation and camera head tilt for slant and parallel hole collimators used in SPECT. J Nucl Med 1987;28:1592–8.PubMedGoogle Scholar
  53. 53.
    Bracewell RN, Riddle AC. Inversion of fan-beam scans in radioastronomy. Astrophys J 1967;150:427–38.CrossRefGoogle Scholar
  54. 54.
    Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.PubMedGoogle Scholar
  55. 55.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Nucl Sci 1994;13:601–9.Google Scholar
  56. 56.
    Llacer J, Velkerov E. Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Trans Med Imag 1989;8:186–93.CrossRefGoogle Scholar
  57. 57.
    Butterworth S. On the theory of filter amplifiers. Exp Wirel Wirel Eng 1930;7:536–41.Google Scholar
  58. 58.
    Links JM, Jeremy RW, Dyer SM, Frank TL, Becker LC. Wiener filtering improves quantification of regional myocardial perfusion with thallium-201 SPECT. J Nucl Med 1990;31:1230–6.PubMedGoogle Scholar
  59. 59.
    Miller TR, Sampathkumaran KS. Design and application of finite impulse response digital filters. Eur J Nucl Med 1982;7:22–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Germano G, Chua T, Kavanagh PB, Kiat H, Berman DS. Detection and correction of patient motion in dynamic and static myocardial SPECT using a multi-detector camera. J Nucl Med 1993;34:1349–55.PubMedGoogle Scholar
  61. 61.
    Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, et al. Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med 2001;42:687–94.PubMedGoogle Scholar
  62. 62.
    Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, et al. “Upward creep” of the heart: a frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718–22.PubMedGoogle Scholar
  63. 63.
    DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30:441–9.PubMedGoogle Scholar
  64. 64.
    Germano G, Kavanagh PB, Chen J, Waechter P, Su HT, Kiat H, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med 1995;36:2127–32.PubMedGoogle Scholar
  65. 65.
    Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm. J Nucl Med 1995;36:1115–22.PubMedGoogle Scholar
  66. 66.
    Choi JY, Lee KH, Kim SJ, Kim SE, Kim BT, Lee SH, et al. Gating provides improved accuracy for differentiating artifacts from true lesions in equivocal fixed defects on technetium 99m tetrofosmin perfusion SPECT. J Nucl Cardiol 1998;5:395–401.CrossRefPubMedGoogle Scholar
  67. 67.
    Germano G, Berman DS. Acquisition and processing for gated perfusion SPECT: technical aspects. In: Germano G, Berman DS, editors. Clinical cardiac SPECT. Armonk, NY: Futura Publishing Company; 1999. p. 93–113.Google Scholar
  68. 68.
    Manrique A, Faraggi M, Vera P, Vilain D, Lebtahi R, Cribier A, et al. 201Tl and 99mTc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 1999;40:805–9.PubMedGoogle Scholar
  69. 69.
    De Puey EG, Parmett S, Ghesani M, Rozanski A, Nichols K, Salensky H. Comparison of Tc-99m sestamibi and Tl-201 gated perfusion SPECT. J Nucl Cardiol 1999;6:278–85.CrossRefPubMedGoogle Scholar
  70. 70.
    Sharir T, Germano G, Kang X, Cohen I, Friedman JD, Berman DS. Prognostic value of post-stress left ventricular volume and ejection fraction by gated myocardial perfusion single photon emission computed tomography in women: gender related differences in normal limits and outcome. Circulation 2002;106(19):II-523. (abstract).Google Scholar
  71. 71.
    Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997;30:1687–92.CrossRefPubMedGoogle Scholar
  72. 72.
    Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003;42:64–70.CrossRefPubMedGoogle Scholar
  73. 73.
    Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100:1035–42.PubMedGoogle Scholar
  74. 74.
    Ficaro E, Fessler J, Shreve P, Kritzman J, Rose P, Corbett J. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected Tc-99m sestamibi single-photon emission computed tomography. Circulation 1996;93:463–73.PubMedGoogle Scholar
  75. 75.
    Prvulovich EM, Lonn AH, Bomanji JB, Jarritt PH, Ell PJ. Effect of attenuation correction on myocardial thallium-201 distribution in patients with a low likelihood of coronary artery disease. Eur J Nucl Med 1997;24:266–75.CrossRefPubMedGoogle Scholar
  76. 76.
    Kluge R, Sattler B, Seese A, Knapp WH. Attenuation correction by simultaneous emission–transmission myocardial single-photon emission tomography using technetium-99m labelled radiotracer: impact on diagnostic accuracy. Eur J Nucl Med 1997;24:1107–14.PubMedGoogle Scholar
  77. 77.
    Hendel RC, Berman DS, Cullom SJ, Follansbee W, Heller GV, Kiat H, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 1999;99:2742–9.PubMedGoogle Scholar
  78. 78.
    Matsunari I, Boning G, Ziegler SI, Nekolla SG, Stollfuss JC, Kosa I, et al. Attenuation corrected Tc-99m-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglucose. J Am Coll Cardiol 1998;32:927–35.CrossRefPubMedGoogle Scholar
  79. 79.
    Chouraqui P, Livschitz S, Sharir T, Wainer N, Wilk M, Moalem I, et al. Evaluation of an attenuation correction method for thallium-201 myocardial perfusion tomographic imaging of patients with low likelihood of coronary artery disease. J Nucl Cardiol 1998;5:369–77.CrossRefPubMedGoogle Scholar
  80. 80.
    Rigo P, Van Boxem P, Foulon J, Safi M, Engdahl J, Links J. Quantitative evaluation of a comprehensive motion, resolution, and attenuation correction program: initial experience. J Nucl Cardiol 1998;5:458–68.CrossRefPubMedGoogle Scholar
  81. 81.
    Vidal R, Buvat I, Darcourt J, Migneco O, Desvignes P, Baudouy M, et al. Impact of attenuation correction by simultaneous emission/transmission tomography on visual assessment of 201Tl myocardial perfusion images. J Nucl Med 1999;40:1301–9.PubMedGoogle Scholar
  82. 82.
    Should SPET attenuation correction be more widely employed in routine clinical practice? For: Ficaro EP; Against: Wackers FJT. Eur J Nucl Med Mol Imaging 2002;29:409–15.CrossRefPubMedGoogle Scholar
  83. 83.
    Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 2002;9:135–43.CrossRefPubMedGoogle Scholar
  84. 84.
    Corbett RJ, Ficaro EP. Clinical review of attenuation-corrected cardiac SPECT. J Nucl Cardiol 1999;6:54–68.CrossRefPubMedGoogle Scholar
  85. 85.
    O’Connor MK, Kemp B, Anstett F, Christian P, Ficaro EP, Frey E, et al. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol 2002;9:361–76.CrossRefPubMedGoogle Scholar
  86. 86.
    Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82.CrossRefGoogle Scholar
  87. 87.
    Links JM, Becker LC, Rigo P, Taillefer R, Hanelin L, Anstett F, et al. Combined corrections for attenuation, depth-dependent blur, and motion in cardiac SPECT: a multicenter trial. J Nucl Cardiol 2000;7:414–25.CrossRefPubMedGoogle Scholar
  88. 88.
    Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer F, Simon E, et al. Human-observer receiver-operating characteristic evaluation of attenuation, scatter, and resolution compensation strategies for 99mTc myocardial perfusion imaging. J Nucl Med 2003;44:1725–34.PubMedGoogle Scholar
  89. 89.
    Wackers FJT. Attenuation compensation of cardiac SPECT: a critical look at a confusing world (editorial). J Nucl Cardiol 2002;9:438–40.CrossRefPubMedGoogle Scholar
  90. 90.
    Gallowitsch HJ, Sykora J, Mikosch P, Kresnik E, Unterweger O, Molnar M, et al. Attenuation-corrected thallium-201 single-photon emission tomography using a gadolinium-153 moving line source: clinical value and the impact of attenuation correction on the extent and severity of perfusion abnormalities. Eur J Nucl Med 1998;25:220–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Almquist H, Arheden H, Arvidsson AH, Pahlm O, Palmer J. Clinical implication of down-scatter in attenuation-corrected myocardial SPECT. J Nucl Cardiol 1999;6:406–11.CrossRefPubMedGoogle Scholar
  92. 92.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.CrossRefPubMedGoogle Scholar
  93. 93.
    Shehata AR, Ahlberg AW, White MP, Russell A, Fleming IA, Levine MG, et al. Dipyridamole–dobutamine stress with Tc-99m sestamibi tomographic myocardial perfusion imaging. Am J Cardiol 1998;82:520–3.CrossRefPubMedGoogle Scholar
  94. 94.
    Van Train KF, Alreeda J, Garcia EV, Cooke CD, Maddahi J, Kiat H, et al. Quantitative same-day rest–stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 1993;34:1494–502.PubMedGoogle Scholar
  95. 95.
    Berman DS, Kang X, Van Train KF, Lewin HC, Cohen I, Areeda J, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1998;32:1987–95.CrossRefPubMedGoogle Scholar
  96. 96.
    Sharir T, Berman DS, Waechter PB, Areeda J, Kavanagh PB, Gerlach J, et al. Quantitative analysis of regional motion and thickening by gated myocardial perfusion SPECT: normal heterogeneity and criteria for abnormality. J Nucl Med 2001;42:1630–8.PubMedGoogle Scholar
  97. 97.
    McClellan JR, Travin MI, Herman SD, Baron JI, Golub RJ, Gallagher JJ, et al. Prognostic importance of scintigraphic left ventricular cavity dilation during intravenous dipyridamole technetium-99m sestamibi myocardial tomographic imaging in predicting coronary events. Am J Cardiol 1997;79:600–5.CrossRefPubMedGoogle Scholar
  98. 98.
    Mazzanti M, Germano G, Kiat H, Kavanagh PB, Alexanderson E, Friedman JD, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996;27:1612–20.CrossRefPubMedGoogle Scholar
  99. 99.
    Ioannidis JP, Trikalinos TA, Danias PG. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis. J Am Coll Cardiol 2002;39:2059–68.CrossRefPubMedGoogle Scholar
  100. 100.
    Tadamura E, Kudoh T, Motooka M, Inubushi M, Shirakawa S, Hattori N, et al. Assessment of regional and global left ventricular function by reinjection Tl-201 and rest Tc-99m sestamibi ECG-gated SPECT: comparison with three-dimensional magnetic resonance imaging. J Am Coll Cardiol 1999;33:991–7.CrossRefPubMedGoogle Scholar
  101. 101.
    Bavelaar-Croon CD, Kayser HW, van der Wall EE, de Roos A, Dibbets-Schneider P, Pauwels EK, et al. Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 2000;217:572–5.PubMedGoogle Scholar
  102. 102.
    Yoshioka J, Hasegawa S, Yamaguchi H, Tokita N, Paul AK, Xiuli M, et al. Left ventricular volumes and ejection fraction calculated from quantitative electrocardiographic-gated 99mTc-tetrofosmin myocardial SPECT. J Nucl Med 1999;40:1693–8.PubMedGoogle Scholar
  103. 103.
    Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001;42:831–7.PubMedGoogle Scholar
  104. 104.
    Acampa W, Cuocolo A, Petretta M, Bruno A, Castellani M, Finzi A, et al. Tetrofosmin imaging in the detection of myocardial viability in patients with previous myocardial infarction: comparison with sestamibi and Tl-201 scintigraphy. J Nucl Cardiol 2002;9:33–40.CrossRefPubMedGoogle Scholar
  105. 105.
    Peix A, Lopez A, Ponce F, Morales J, de la Vega AR, Chesa CS, et al. Enhanced detection of reversible myocardial hypoperfusion by technetium 99m-tetrofosmin imaging and first-pass radionuclide angiography after nitroglycerin administration. J Nucl Cardiol 1998;5:469–76.CrossRefPubMedGoogle Scholar
  106. 106.
    Greco C, Ciavolella M, Tanzilli G, Sinatra R, Macrina F, Schillaci O, et al. Preoperative identification of viable myocardium: effectiveness of nitroglycerine-induced changes in myocardial sestamibi uptake. Cardiovasc Surg 1998;6:149–55.CrossRefPubMedGoogle Scholar
  107. 107.
    Cerqueira MD. The user friendly nuclear cardiology report: what needs to be considered and what needs to be included. J Nucl Cardiol 1996;3:350–6.CrossRefPubMedGoogle Scholar
  108. 108.
    Wackers FJT. Intersocietal Commission for the Accreditation of Nuclear Medicine Laboratories (ICANL) position statement on standardization and optimization of nuclear cardiology reports. J Nucl Cardiol 2000;7:397–400.CrossRefPubMedGoogle Scholar
  109. 109.
    Germano G, Berman DS. Quantitative gated perfusion SPECT. In: Germano G, Berman DS, editors. Clinical cardiac SPECT. Armonk, NY: Futura Publishing Company; 1999. p. 115–46.Google Scholar
  110. 110.
    Pennell DJ, Prvulovich E. Image interpretation. In: Ell PJ, editor. Nuclear cardiology. London: British Nuclear Medicine Society; 1995. p. 56–79.Google Scholar
  111. 111.
    American Heart Association, American College of Cardiology, and Society of Nuclear Medicine. Standardisation of cardiac tomographic imaging. Circulation 1992;86:338–9.Google Scholar
  112. 112.
    Candell-Riera J, Santana-Boado C, Bermejo B, Armadans L, Castell J, Casans I, et al. Interhospital observer agreement on interpretation of exercise myocardial Tc-99m-tetrofosmin SPECT studies. J Nucl Cardiol 2001;8:49–57.CrossRefPubMedGoogle Scholar
  113. 113.
    Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29:1257–66.CrossRefPubMedGoogle Scholar
  114. 114.
    Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–62.PubMedGoogle Scholar
  115. 115.
    Berry JJ, Baker JA, Pieper KS, Hanson MW, Hoffman JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med 1991;32:1518–25.PubMedGoogle Scholar
  116. 116.
    Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, Maki M, Ruotsalainen U, Harkonen R, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35:989–98.PubMedGoogle Scholar
  117. 117.
    Schinkel AF, Bax JJ, Valkema R, Elhendy A, van Domburg RT, Vourvouri EC, et al. Effect of diabetes mellitus on myocardial 18F-FDG SPECT using acipimox for the assessment of myocardial viability. J Nucl Med 2003;44:877–83.PubMedGoogle Scholar
  118. 118.
    Schroder O, Hor G, Hertel A, Baum RP. Combined hyperinsulinaemic glucose clamp and oral acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: comparative results. Nucl Med Commun 1998;19:867–74.PubMedGoogle Scholar
  119. 119.
    Lewis P, Nunan T, Dynes A, Maisey M. The use of low-dose intravenous Insulin in clinical myocardial F-18 FDG PET scanning. Clin Nucl Med 1996;21:15–8.CrossRefPubMedGoogle Scholar
  120. 120.
    McCord ME, Bacharach SL, Bonow RO, Dilsizian V, Cuocolo A, Freedman N. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med 1992;33:1209–14. (discussion 1214–5).PubMedGoogle Scholar
  121. 121.
    Imaging guidelines for nuclear cardiology procedures, part 2. American Society of Nuclear Cardiology. J Nucl Cardiol 1999;6:G47–84.CrossRefPubMedGoogle Scholar
  122. 122.
    Porenta G, Kuhle W, Czernin J, Ratib O, Brunken RC, Phelps ME, et al. Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 1992;33:1628–36.PubMedGoogle Scholar
  123. 123.
    Nekolla S, Miethaner C, Nguyen N, Ziegler S, Schwaiger M. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 1998;25:1313–21.CrossRefPubMedGoogle Scholar
  124. 124.
    Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Non-invasive quantitation of myocardial blood flow in human subjects with oxygen-15 labelled water and positron emission tomography. J Am Coll Cardiol 1989;14:639–52.PubMedGoogle Scholar
  125. 125.
    Choi Y, Huang SC, Hawkins RA, Kuhle WG, Dahlbom M, Hoh CK, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET. J Nucl Med 1993;34:488–97.PubMedGoogle Scholar
  126. 126.
    Hutchins G, Schwaiger M, Rosenspire K, Krivokapich J, Schelbert H, Kuhl D. Noninvasive quantification of regional myocardial blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032.PubMedGoogle Scholar
  127. 127.
    Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988;78:104–15.PubMedGoogle Scholar
  128. 128.
    Muzik O, Beanlands R, Wolfe E, Hutchins GD, Schwaiger M. Automated region definition for cardiac nitrogen-13-ammonia PET imaging. J Nucl Med 1993;34:336–44.PubMedGoogle Scholar
  129. 129.
    Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Circulation 1990;82:1377–86.PubMedGoogle Scholar
  130. 130.
    Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–51.PubMedGoogle Scholar
  131. 131.
    Uren NG, Melin JA, De-Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary–artery stenosis. N Engl J Med 1994;330:1782–8.CrossRefPubMedGoogle Scholar
  132. 132.
    Gropler RJ, Lee KJ, Moerlein SM, Siegel BA, Geltman EM. Regional variation in myocardial accumulation of 18F-fluorodeoxyglucose in fasted normal subjects. J Am Coll Cardiol 1990;15:81A.Google Scholar
  133. 133.
    Choi Y, Hawkins RA, Brunken RC, Huang SC, Kuhle WG, Chen K, et al. Evaluation of regional heterogeneity of myocardial glucose metabolism in normal humans using dynamic FDG-PET (abstract). J Nucl Med 1991;32:938.Google Scholar
  134. 134.
    Maes A, Flameng W, Borgers M, Nuyts J, Ausma J, Bormans G, et al. Regional myocardial blood flow, glucose utilization and contractile function before and after revascularization and ultrastructural findings in patients with chronic coronary artery disease. Eur J Nucl Med 1995;22:1299–305.CrossRefPubMedGoogle Scholar
  135. 135.
    Mesotten L, Maes A, Herregods MC, Desmet W, Nuyts J, Van de Werf F, et al. PET “reversed mismatch pattern” early after acute myocardial infarction: follow-up of flow, metabolism and function. Eur J Nucl Med 2001;28:466–71.CrossRefPubMedGoogle Scholar
  136. 136.
    Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–44.PubMedGoogle Scholar
  137. 137.
    Bax JJ, Poldermans D, Elhendy A, Cornel JH, Boersma E, Rambaldi R, et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol 1999;34:163–9.CrossRefPubMedGoogle Scholar
  138. 138.
    vom Dahl J, Altehoefer C, Sheehan FH, Buechin P, Uebis R, Messmer BJ, et al. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 1996;28:948–58.CrossRefPubMedGoogle Scholar
  139. 139.
    Choi Y, Hawkins RA, Huang SC, Gambhir SS, Brunken RC, Phelps ME, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991;32:733–8.PubMedGoogle Scholar
  140. 140.
    Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–66.PubMedGoogle Scholar
  141. 141.
    Blanksma PK, Willemsen AT, Meeder JG, de Jong RM, Anthonio RL, Pruim J, et al. Quantitative myocardial mapping of perfusion and metabolism using parametric polar map displays in cardiac PET. J Nucl Med 1995;36:153–8.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • B. Hesse
    • 1
    Email author
  • K. Tägil
    • 2
  • A. Cuocolo
    • 3
  • C. Anagnostopoulos
    • 4
  • M. Bardiés
    • 5
  • J. Bax
    • 6
  • F. Bengel
    • 7
  • E. Busemann Sokole
    • 8
  • G. Davies
    • 9
  • M. Dondi
    • 10
  • L. Edenbrandt
    • 2
  • P. Franken
    • 11
  • A. Kjaer
    • 1
  • J. Knuuti
    • 12
  • M. Lassmann
    • 13
  • M. Ljungberg
    • 14
  • C. Marcassa
    • 15
  • P. Y. Marie
    • 16
  • F. McKiddie
    • 17
  • M. O’Connor
    • 18
  • E. Prvulovich
    • 19
  • R. Underwood
    • 20
  • B. van Eck-Smit
    • 10
  1. 1.Department of Clinical Physiology and Nuclear Medicine, RigshospitaletUniversity Hospital of CopenhagenCopenhagenDenmark
  2. 2.Department of Clinical PhysiologyMalmö University HospitalMalmöSweden
  3. 3.Department of Biomorphological and Functional SciencesUniversity Federico IINaplesItaly
  4. 4.Imperial College School of Medicine (NHLI)LondonUK
  5. 5.INSERM U601NantesFrance
  6. 6.Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
  7. 7.Nuklearmedizinische Klinik der TUMunichGermany
  8. 8.Department of Nuclear MedicineAcademic Medical CenterAmsterdamThe Netherlands
  9. 9.Department of Medical PhysicsHull and East Yorkshire Hospitals NHS TrustHullUK
  10. 10.Nuclear Medicine Section, Division of Human HealthInternational Atomic Energy AgencyViennaAustria
  11. 11.Nuclear MedicineAZ VUBBrusselsBelgium
  12. 12.Turku PET CentreTurku University Central HospitalTurkuFinland
  13. 13.Klinik für NuklearmedizinUniversität WürzburgWürzburgGermany
  14. 14.Department of Medical Radiation PhysicsThe Jubileum InstituteLundSweden
  15. 15.Fondazione MaugeriIRCCSVeronaItaly
  16. 16.Service de Médecine NucléaireHôpital de BraboisVandoeuvreFrance
  17. 17.Nuclear Medicine DepartmentAberdeen Royal InfirmaryForesterhillUK
  18. 18.Section of Nuclear MedicineMayo ClinicRochesterUS
  19. 19.Institute of Nuclear MedicineMiddlesex HospitalLondonUK
  20. 20.Department of Nuclear MedicineRoyal Brompton HospitalLondonUK

Personalised recommendations