[131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity

  • Pat Zanzonico
  • Guenther Koehne
  • Humilidad F. Gallardo
  • Mikhail Doubrovin
  • Ekaterina Doubrovina
  • Ronald Finn
  • Ronald G. Blasberg
  • Isabelle Riviere
  • Richard J. O’Reilly
  • Michel Sadelain
  • Steven M. Larson
Original article

Abstract

Purpose

Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [131I]-2′-fluoro-2′-deoxy-1-β-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular 131I (even at tracer levels), the nucleus absorbed dose (Dn) and dose-dependent immune functionality were evaluated for NIT+ T cells labeled ex vivo in [131I]FIAU-containing medium.

Methods

Based on in vitro kinetic studies of [131I]FIAU uptake by NIT+ T cells, Dn was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [131I]FIAU-labeled cells was assayed against 51Cr-labeled target cells [B-lymphoblastoid cells (BLCLs)] in a standard 4-h release assay.

Results and conclusion

At median nuclear absorbed doses up to 830 cGy, a 51Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies.

Keywords

Molecular imaging Radiobiology/dosimetry Radiopharmaceuticals Cell labeling Cell trafficking 

References

  1. 1.
    Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997;15:433–444PubMedGoogle Scholar
  2. 2.
    Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma. N Engl J Med 1994;331:679–680CrossRefGoogle Scholar
  3. 3.
    Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990;76:2462–2465PubMedGoogle Scholar
  4. 4.
    Papadopoulos EB, Ladanyi M, Emanuel D, Mackinnon S, Boulad F, Carabasi MH, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994;330:1185–1191CrossRefPubMedGoogle Scholar
  5. 5.
    Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992;257:238–241PubMedCrossRefGoogle Scholar
  6. 6.
    Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 1995;345:9–13CrossRefPubMedGoogle Scholar
  7. 7.
    Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 1995;86:2041–2050PubMedGoogle Scholar
  8. 8.
    Drobyski WR, Keever CA, Roth MS, Koethe S, Hanson G, McFadden P, et al. Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood 1993;82:2310–2318PubMedGoogle Scholar
  9. 9.
    Mackinnon S, Papadopoulos EB, Carabasi MH, Reich L, Collins NH, Boulad F, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995;86:1261–1268PubMedGoogle Scholar
  10. 10.
    Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 2003;21:405–413CrossRefPubMedGoogle Scholar
  11. 11.
    Koehne G, Gallardo HF, Sadelain M, O’Reilly RJ. Rapid selection of antigen-specific T lymphocytes by retroviral transduction. Blood 2000;96:109–117PubMedGoogle Scholar
  12. 12.
    Gallardo HF, Tan C, Sadelain M. The internal ribosomal entry site of the encephalomyocarditis virus enables reliable coexpression of two transgenes in human primary T lymphocytes. Gene Ther 1997;4:1115–1119CrossRefPubMedGoogle Scholar
  13. 13.
    Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–6132PubMedGoogle Scholar
  14. 14.
    Tjuvajev JG, Joshi A, Callegari J, Lindsley L, Joshi R, Balatoni J, et al. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1999;1:315–320CrossRefPubMedGoogle Scholar
  15. 15.
    Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–4095PubMedGoogle Scholar
  16. 16.
    Koehne G, Smith KM, Ferguson TL, Williams RY, Heller G, Pamer EG, et al. Quantitation, selection, and functional characterization of Epstein-Barr virus-specific and alloreactive T cells detected by intracellular interferon-gamma production and growth of cytotoxic precursors. Blood 2002;99:1730–1740CrossRefPubMedGoogle Scholar
  17. 17.
    Goddu SM, Howell RW, Bouchet LG, Bolch WE, Rao DV. MIRD cellular S factors: self-absorbed dose per unit cumulated activity for selected radionuclides and monoenergetic electron and alpha particle emitters incorporated into different cell compartments. Reston, VA: Society of Nuclear Medicine; 1997Google Scholar
  18. 18.
    Weber D, Eckerman K, Dillman L, Ryman J. MIRD: radionuclide data and decay schemes. New York: Society of Nuclear Medicine; 1989Google Scholar
  19. 19.
    Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43:1072–1083PubMedGoogle Scholar
  20. 20.
    Thakur ML, McKenney SM. Indium 111-mercaptopyridine N-oxide-labeled human leukocytes and platelets: mechanism of labeling and intracellular location of 111In and mercaptopyridine N-oxide. J Lab Clin Med 1986;107:141–147PubMedGoogle Scholar
  21. 21.
    Coleman R, Datz F. Detection of inflammatory disease using radiolabeled cells. In: Sandler M, Patton J, Coleman R, et al., editors. Diagnostic nuclear medicine. Baltimore, MD: Williams & Wilkins; 1996; pp. 1509–1524Google Scholar
  22. 22.
    Harwood SJ, Camblin JG, Hakki S, Morrissey MA, Laven DL, Zangara LM, et al. Use of technetium antigranulocyte monoclonal antibody Fab’ fragments for the detection of osteomyelitis. Cell Biophys 1994;25:99–107Google Scholar
  23. 23.
    Kipper SL. The role of radiolabeled leukocyte imaging in the management of patients with acute appendicitis. Q J Nucl Med 1999;43:83–92PubMedGoogle Scholar
  24. 24.
    Koblik PD, De Nardo GL, Berger HJ. Current status of immunoscintigraphy in the detection of thrombosis and thromboembolism. Semin Nucl Med 1989;19:221–237PubMedCrossRefGoogle Scholar
  25. 25.
    McAfee JG, Subramanian G, Gagne G. Technique of leukocyte harvesting and labeling: problems and perspectives. Semin Nucl Med 1984;14:83–106PubMedCrossRefGoogle Scholar
  26. 26.
    Welling M, Feitsma HI, Calame W, Pauwels EK. Detection of experimental infections with 99mTc-labeled monoclonal antibodies against TNF-alpha and interleukin-8. Nucl Med Biol 1997;24:649–655CrossRefPubMedGoogle Scholar
  27. 27.
    Botti C, Negri DR, Seregni E, Ramakrishna V, Arienti F, Maffioli L, et al. Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med 1997;24:497–504PubMedGoogle Scholar
  28. 28.
    Melder RJ, Elmaleh D, Brownell AL, Brownell GL, Jain RK. A method for labeling cells for positron emission tomography (PET) studies. J Immunol Methods 1994;175:79–87CrossRefPubMedGoogle Scholar
  29. 29.
    Shibata C, Shiwaku Y, Ohizumi Y, Maezawa H, Okumura Y, Suzuki Y, et al. [In vivo distributions of 111In and/or 3H labeled lymphocyte in C3H/He mouse (author’s transl)]. Radioisotopes 1979;28:431–436PubMedGoogle Scholar
  30. 30.
    Sims TJ, Page RC. An improved method for assessing the incorporation of labeled precursors into DNA by human mononuclear cells. J Immunol Methods 1984;67:255–269CrossRefPubMedGoogle Scholar
  31. 31.
    Nishimura Y, Nakamura H. Radioactive iodination of lymphocyte surface proteins and characterization of their molecular properties. J Biochem (Tokyo) 1982;91:1679–1686Google Scholar
  32. 32.
    Slezak SE, Muirhead KA. Radioactive cell membrane labelling. Nature 1991;352:261–262CrossRefPubMedGoogle Scholar
  33. 33.
    Spiva DA, Sears DA. Surface labeling of normal human peripheral blood lymphocytes with a nonpenetrating radioactive probe. J Reticuloendothel Soc 1981;30:129–145PubMedGoogle Scholar
  34. 34.
    McAfee JG, Thakur ML. Survey of radioactive agents for in vitro labeling of phagocytic leukocytes. II. Particles. J Nucl Med 1976;17:488–492PubMedGoogle Scholar
  35. 35.
    Puncher MR, Blower PJ. Labelling of leucocytes with colloidal technetium-99m-SnF2: an investigation of the labelling process by autoradiography. Eur J Nucl Med 1995;22:101–107CrossRefPubMedGoogle Scholar
  36. 36.
    Korf J, Veenma-van der Duin L, Brinkman-Medema R, Niemarkt A, de Leij LF. Divalent cobalt as a label to study lymphocyte distribution using PET and SPECT. J Nucl Med 1998;39:836–841PubMedGoogle Scholar
  37. 37.
    Mukherji B, Arnbjarnarson O, Spitznagle LA, Kalish RI, Hoffman J, Ergin MT, et al. Imaging pattern of previously in vitro sensitized and interleukin-2 expanded autologous lymphocytes in human cancer. Int J Rad Appl Instrum B 1988;15:419–427PubMedGoogle Scholar
  38. 38.
    Spencer RP, Mukherji B. Utilization of tumour-sensitized (‘educated’) and radiolabelled lymphocytes for tumour localization. Nucl Med Commun 1988;9:783–786PubMedCrossRefGoogle Scholar
  39. 39.
    Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18:357–366CrossRefPubMedGoogle Scholar
  40. 40.
    Pentlow KS, Graham MC, Lambrecht RM, Daghighian F, Bacharach SL, Bendriem B, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996;37:1557–1562PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pat Zanzonico
    • 1
  • Guenther Koehne
    • 2
    • 3
  • Humilidad F. Gallardo
    • 4
  • Mikhail Doubrovin
    • 5
    • 6
  • Ekaterina Doubrovina
    • 2
    • 3
  • Ronald Finn
    • 7
  • Ronald G. Blasberg
    • 5
    • 6
  • Isabelle Riviere
    • 3
    • 4
  • Richard J. O’Reilly
    • 2
    • 3
  • Michel Sadelain
    • 3
    • 4
  • Steven M. Larson
    • 5
  1. 1.Department of Medical PhysicsMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Allogeneic Transplantation ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Immunology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.Gene Transfer and Somatic Cell Engineering FacilityMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  6. 6.Department of NeurologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  7. 7.Radiochemistry and Cyclotron Core FacilityMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations