Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-L-tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat

  • Nicolas Spaeth
  • Matthias T. Wyss
  • Jens Pahnke
  • Gregoire Biollaz
  • Amelie Lutz
  • Kerstin Goepfert
  • Gerrit Westera
  • Valerie Treyer
  • Bruno Weber
  • Alfred BuckEmail author
Original article



The positron emission tomography (PET) tracers 18F-fluoro-ethyl-L-tyrosine (FET), 18F-fluorocholine (N,N-dimethyl-N-[18F]fluoromethyl-2-hydroxyethylammonium (FCH]) and 18F-fluoro-2-deoxyglucose (FDG) are used in the diagnosis of brain tumours. The aim of this study was threefold: (a) to assess the uptake of the different tracers in the F98 rat glioma, (b) to evaluate the impact of blood-brain barrier (BBB) disruption and microvessel density (MVD) on tracer uptake and (c) to compare the uptake in the tumours to that in the radiation injuries (induced by proton irradiation of healthy rats) of our previous study.


F98 gliomas were induced in 26 rats. The uptake of FET, FCH and FDG was measured using autoradiography and correlated with histology, disruption of the BBB and MVD.


The mean FET, FCH and FDG standardised uptake values (SUVs) in the tumour and the contralateral normal cortex (in parentheses) were 4.19±0.86 (1.32±0.26), 2.98±0.58 (0.51±0.11) and 11.02±3.84 (4.76±1.77) respectively. MVD was significantly correlated only with FCH uptake. There was a trend towards a negative correlation between the degree of BBB disruption and FCH uptake and a trend towards a positive correlation with FET uptake. The ratio of the uptake in tumours to that in the radiation injuries was 1.97 (FCH), 2.71 (FET) and 2.37 (FDG).


MVD displayed a significant effect only on FCH uptake. The degree of BBB disruption seems to affect the accumulation of FET and FCH, but not FDG. Mean tumour uptake for all tracers was significantly higher than the accumulation in radiation injuries.


F98 glioma 18F-fluorocholine 18F-fluoro-ethyl-L-tyrosine 18F-fluoro-2-deoxyglucose Autoradiography 



This study was supported by the Sassela-Stiftung, the Olga Mayenfisch-Stiftung and the Huggenberger-Bischof-Stiftung in Zurich. The authors thank Gustav K. von Schulthess and Dominik Weishaupt for valuable discussions, as well as Tibor Cservenyak and Rolf Hesselmann for production of the studied tracers. Valerie Treyer was supported by the Swiss National Science Foundation.


  1. 1.
    Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32:1323–1329PubMedGoogle Scholar
  2. 2.
    Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998;19:407–413PubMedGoogle Scholar
  3. 3.
    Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 2001;28:1664–1670PubMedCrossRefGoogle Scholar
  4. 4.
    Kaim AH, Weber B, Kurrer M, Gottschalk J, von Schulthess GK, Buck A. Autoradiographic quantification of 18F-FDG uptake in experimental soft tissue abscesses in rats. Radiology 2002;223:446–451PubMedCrossRefGoogle Scholar
  5. 5.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–1980PubMedGoogle Scholar
  6. 6.
    Hara T, Kondo T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 2003; 99:474–479PubMedGoogle Scholar
  7. 7.
    Hara T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol 2002;4:267–273PubMedCrossRefGoogle Scholar
  8. 8.
    Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000;27:542–549PubMedCrossRefGoogle Scholar
  9. 9.
    Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, et al. 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 2002;29:648–654PubMedCrossRefGoogle Scholar
  10. 10.
    Wyss MT, Weber B, Honer M, Spath N, Ametamey SM, Westera G, et al. 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 2003;20:20Google Scholar
  11. 11.
    Rau FC, Weber WA, Wester HJ, Herz M, Becker I, Kruger A,et al. O-(2-[18F]Fluoroethyl)-L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 2002;29:1039–1046PubMedCrossRefGoogle Scholar
  12. 12.
    Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999;40:205–212PubMedGoogle Scholar
  13. 13.
    Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999;40:1367–1373PubMedGoogle Scholar
  14. 14.
    Langen KJ, Jarosch M, Muhlensiepen H, Hamacher K, Broer S, Jansen P, et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003;30:501–508PubMedCrossRefGoogle Scholar
  15. 15.
    Baum RP, Calcagni M, Dimitrakopoulou-Strauss A, Strauss LG. Pharmakokinetic analysis of O-2-[18F] fluorethyl-L-tyrosin (18F-FET) by dynamic PET in the differential diagnosis of malignant gliomas. J Nucl Med 2003; 44(Suppl):63PGoogle Scholar
  16. 16.
    Popperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K. Value of O-(2-[18F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004;31:1464–1470PubMedCrossRefGoogle Scholar
  17. 17.
    Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K, et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005;32:422–429PubMedCrossRefGoogle Scholar
  18. 18.
    Floeth FW, Pauleit D, Wittsack HJ, Langen KJ, Reifenberger G, Hamacher K, et al Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005;102:318–327PubMedCrossRefGoogle Scholar
  19. 19.
    Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, et al. Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 2003;30:868–873PubMedCrossRefGoogle Scholar
  20. 20.
    Hernandez-Alcoceba R, Saniger L, Campos J, Nunez MC, Khaless F, Gallo MA, et al. Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene 1997;15:2289–2301PubMedCrossRefGoogle Scholar
  21. 21.
    Haeffner EW. Studies on choline permeation through the plasma membrane and its incorporation into phosphatidyl choline of Ehrlich-Lettre-ascites tumor cells in vitro. Eur J Biochem 1975;51:219–228PubMedCrossRefGoogle Scholar
  22. 22.
    Katz-Brull R, Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 1996;16:1375–1380PubMedGoogle Scholar
  23. 23.
    Yoshimoto M, Waki A, Obata A, Furukawa T, Yonekura Y, Fujibayashi Y. Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol 2004;31:859–865PubMedCrossRefGoogle Scholar
  24. 24.
    Henriksen G, Herz M, Hauser A, Schwaiger M, Wester HJ. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F]fluorocholine ([18F]dOC). Nucl Med Biol 2004;31:851–858PubMedCrossRefGoogle Scholar
  25. 25.
    Hara T, Inagaki K, Kosaka N, Morita T Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 2000;41:1507–1513PubMedGoogle Scholar
  26. 26.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998;39:990–995PubMedGoogle Scholar
  27. 27.
    Hara T, Kosaka N, Shinoura N, Kondo T PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997;38:842–847PubMedGoogle Scholar
  28. 28.
    Kobori O, Kirihara Y, Kosaka N, Hara T. Positron emission tomography of esophageal carcinoma using 11C-choline and 18F-fluorodeoxyglucose: a novel method of preoperative lymph node staging. Cancer 1999;86:1638–1648PubMedCrossRefGoogle Scholar
  29. 29.
    Shinoura N, Nishijima M, Hara T, Haisa T, Yamamoto H, Fujii K, et al. Brain tumors: detection with C-11 choline PET. Radiology 1997;202:497–503PubMedGoogle Scholar
  30. 30.
    DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42:1805–1814PubMedGoogle Scholar
  31. 31.
    Spaeth N, Wyss MT, Weber B, Scheidegger S, Lutz A, Verwey J, et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 2004;45:1931–1938PubMedGoogle Scholar
  32. 32.
    Ambar BB, Frei K, Malipiero U, Morelli AE, Castro MG, Lowenstein PR, et al. Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand. Hum Gene Ther 1999;10:1641–1648PubMedCrossRefGoogle Scholar
  33. 33.
    DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110–117PubMedGoogle Scholar
  34. 34.
    Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980;238:E69–E82PubMedGoogle Scholar
  35. 35.
    Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C. A JAVA environment for medical image data analysis: initial application for brain PET quantitation. Med Inform (Lond) 1998;23:207–214Google Scholar
  36. 36.
    Saria A, Lundberg JM. Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 1983;8:41–49PubMedCrossRefGoogle Scholar
  37. 37.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8PubMedCrossRefGoogle Scholar
  38. 38.
    Barth RF. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 1998;36:91–102PubMedCrossRefGoogle Scholar
  39. 39.
    Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A. Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 1999;26:1501–1509PubMedCrossRefGoogle Scholar
  40. 40.
    Pauleit D, Stoffels G, Schaden W, Hamacher K, Bauer D, Tellmann L, et al. PET with O-(2-18F-fluoroethyl)-L-tyrosine in peripheral tumors: first clinical results. J Nucl Med 2005; 46:411–416PubMedGoogle Scholar
  41. 41.
    Shinoura N, Nishijima M, Hara T, Haisa T, Yamamoto H, Fujii K, et al. Brain tumors: detection with C-11 choline PET. Radiology 1997;202:497–503PubMedGoogle Scholar
  42. 42.
    Allen DD, Smith QR. Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J Neurochem 2001;76:1032–1041PubMedCrossRefGoogle Scholar
  43. 43.
    de Molina AR, Banez-Coronel M, Gutierrez R, Rodriguez-Gonzalez A, Olmeda D, Megias D, et al. Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res 2004;64:6732–6739CrossRefGoogle Scholar
  44. 44.
    Aronen HJ, Pardo FS, Kennedy DN, Belliveau JW, Packard SD, Hsu DW, et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 2000;6:2189–2200PubMedGoogle Scholar
  45. 45.
    Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996;77:362–372PubMedCrossRefGoogle Scholar
  46. 46.
    Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998;39:778–785PubMedGoogle Scholar
  47. 47.
    Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 2003;64:227–237PubMedCrossRefGoogle Scholar
  48. 48.
    Cheon GJ, Ahn SH, Cho YS, Kwack HS, Lee CH, Choi CW,et al. Correlation of 18F-FET uptake and histologic grades of primary brain tumors. J Nucl Med 2003;44 Suppl:367PGoogle Scholar
  49. 49.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005;128:678–687PubMedCrossRefGoogle Scholar
  50. 50.
    Pauleit D, Floeth F, Tellmann L, Hamacher K, Hautzel H, Muller HW, et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors. J Nucl Med 2004;45:374–381PubMedGoogle Scholar
  51. 51.
    Tian M, Zhang H, Higuchi T, Oriuchi N, Endo K. Oncological diagnosis using 11C-choline-positron emission tomography in comparison with 2-deoxy-2-[18F]fluoro-D-glucose-positron emission tomography. Mol Imaging Biol 2004;6:172–179PubMedCrossRefGoogle Scholar
  52. 52.
    Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 2004;31:1064–1072PubMedGoogle Scholar
  53. 53.
    Utriainen M, Komu M, Vuorinen V, Lehikoinen P, Sonninen P, Kurki T, et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol 2003;62:329–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Nicolas Spaeth
    • 1
  • Matthias T. Wyss
    • 1
    • 2
  • Jens Pahnke
    • 3
  • Gregoire Biollaz
    • 4
  • Amelie Lutz
    • 5
  • Kerstin Goepfert
    • 5
  • Gerrit Westera
    • 2
  • Valerie Treyer
    • 1
  • Bruno Weber
    • 1
  • Alfred Buck
    • 1
    Email author
  1. 1.PET Center, Division of Nuclear MedicineUniversity Hospital, Rämistrasse 100, 8091ZürichSwitzerland
  2. 2.Center for Radiopharmaceutical Science of ETH, PSI and USZ, Paul Scherrer InstituteVilligen und University HospitalZurichZurich, Switzerland
  3. 3.Department of PathologyUniversity HospitalZurichZurich, Switzerland
  4. 4.Section of Clinical ImmunologyUniversity HospitalZurichZurich, Switzerland
  5. 5.Institute of Diagnostic RadiologyUniversity HospitalZurichZurich, Switzerland

Personalised recommendations