Myocardial glucose utilisation in type II diabetes mellitus patients treated with sulphonylurea drugs

  • Ikuo Yokoyama
  • Yusuke Inoue
  • Toshiyuki Moritan
  • Kuni Ohtomo
  • Ryozo Nagai
Original article



Chronic sulphonylurea treatment maintains improved glycaemic control through mechanisms other than enhancement of insulin secretion and may act on various organs. The aim of this study was to investigate whether the chronic use of sulphonylurea drugs influences PET measurement of myocardial glucose utilisation (MGU) in type II diabetes mellitus.


Forty-two patients with type II diabetes mellitus and 17 control subjects underwent dynamic 18F-FDG PET to measure MGU during hyperinsulinaemic euglycaemic clamping. Twenty-one patients had been taking sulphonylurea drugs for more than 1 year (SU group), and the other 21 patients were drug naive (non-SU group). The haemoglobin A1c levels in the two patient groups were similar. Glucose disposal rate (GDR) was also determined as a marker of whole-body insulin resistance.


GDR in the SU group (9.01±2.53 mg min−1 kg−1) was significantly higher than that in the non-SU group (4.10±2.47, p<0.01) and was similar to that in the controls (9.76±2.97). MGU in the SU group (7.66±3.02 mg min−1 100 g−1) was significantly higher than that in the non-SU group (5.53±2.05, p<0.01) and was similar to that in the controls (7.49±2.74).


Chronic sulphonylurea treatment influences MGU independent of the degree of glycaemic control. The effect of medication should be kept in mind when measuring and interpreting MGU in patients with type II diabetes mellitus.


Sulphonylurea Insulin resistance 18F-FDG PET Heart 


  1. 1.
    Voipio-Pulkki LM, Nuutila P, Knuuti MJ, Ruotsalainen U, Haaparanta M, Teras M, et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med 1993;34:2064–2067PubMedGoogle Scholar
  2. 2.
    Yokoyama I, Ohtake T, Momomura S, Yonekura K, Yamada N, Nishikawa J, et al. Organ-specific insulin resistance in patients with noninsulin-dependent diabetes mellitus and hypertension. J Nucl Med 1998;39:884–889PubMedGoogle Scholar
  3. 3.
    Yokoyama I, Yonekura K, Moritan T, Tateno M, Momose T, Ohtomo K, et al. Troglitazone improves whole-body insulin resistance and skeletal muscle glucose use in type II diabetic patients. J Nucl Med 2001;42:1005–1010PubMedGoogle Scholar
  4. 4.
    Yokoyama I, Yonekura K, Ohtake T, Kawamura H, Matsumoto A, Inoue Y, et al. Role of insulin resistance in heart and skeletal muscle F-18 fluorodeoxyglucose uptake in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol 2000;7:242–248CrossRefPubMedGoogle Scholar
  5. 5.
    DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effect of insulin on peripheral and splanchnic glucose metabolism in non-insulin dependent (type II) diabetes mellitus. J Clin Invest 1985;76:149–155PubMedCrossRefGoogle Scholar
  6. 6.
    Kelley DE, Mintun MA, Watkins SC, Simoneau JA, Jadali F, Fredrickson A, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest 1996;97:2705–2713PubMedCrossRefGoogle Scholar
  7. 7.
    Bonora E, Bonadonna RC, Del Prato S, Gulli G, Solini A, Matsuda M, et al. In vivo glucose metabolism in obese and type II diabetic subjects with or without hypertension. Diabetes 1993;42:764–772PubMedCrossRefGoogle Scholar
  8. 8.
    Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E, Camici PG. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes 2002;51:3020–3024PubMedCrossRefGoogle Scholar
  9. 9.
    DeFronzo RA. Insulin resistance, hyperinsulinemia, and coronary artery disease: a complex metabolic web. J Cardiovasc Pharmacol 1992;20 Suppl 11:S1–S16PubMedCrossRefGoogle Scholar
  10. 10.
    Reaven GM. Banting lecture 1988 Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607PubMedCrossRefGoogle Scholar
  11. 11.
    Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996;334:952–957CrossRefPubMedGoogle Scholar
  12. 12.
    Nuutila P, Knuuti J, Ruotsalainen U, Koivisto VA, Eronen E, Teras M, et al. Insulin resistance is localized to skeletal but not heart muscle in type 1 diabetes. Am J Physiol 1993;264:E756–E762PubMedGoogle Scholar
  13. 13.
    Nuutila P, Knuuti MJ, Maki M, Laine H, Ruotsalainen U, Teras M, et al. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes 1995;44:31–36PubMedCrossRefGoogle Scholar
  14. 14.
    Nuutila P, Maki M, Laine H, Knuuti MJ, Ruotsalainen U, Luotolahti M, et al. Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. J Clin Invest 1995;96:1003–1009PubMedCrossRefGoogle Scholar
  15. 15.
    Utriainen T, Takala T, Luotolahti M, Ronnemaa T, Laine H, Ruotsalainen U, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia 1998;41:555–559CrossRefPubMedGoogle Scholar
  16. 16.
    Yokoyama I, Ohtake T, Momomura S, Yonekura K, Kobayakawa N, Aoyagi T, et al. Insulin action on heart and skeletal muscle FDG uptake in patients with hypertriglyceridemia. J Nucl Med 1999;40:1116–1121PubMedGoogle Scholar
  17. 17.
    Pfeifer MA, Halter JB, Judzewitsch RG, Beard JC, Best JD, Ward WK, et al. Acute and chronic effects of sulfonylurea drugs on pancreatic islet function in man. Diabetes Care 1984;7 Suppl 1:25–34PubMedGoogle Scholar
  18. 18.
    Beck-Nielsen H, Hother-Nielsen O, Pedersen O. Mechanism of action of sulphonylureas with special reference to the extrapancreatic effect: an overview. Diabet Med 1988;5:613–620PubMedCrossRefGoogle Scholar
  19. 19.
    Pedersen O, Hother-Nielsen O, Bak J, Hjollund E, Beck-Nielsen H. Effects of sulfonylureas on adipocyte and skeletal muscle insulin action in patients with non-insulin-dependent diabetes mellitus. Am J Med 1991;90:22S–28SCrossRefPubMedGoogle Scholar
  20. 20.
    Howes LG Cardiovascular effects of sulphonylureas: role of KATP channels. Diabetes Obes Metab 2000;2:67–73CrossRefPubMedGoogle Scholar
  21. 21.
    Ehrenkaufer RE, Potocki JF, Jewett DM. Simple synthesis of F-18-labeled 2-fluoro-2-deoxy-D-glucose: concise communication. J Nucl Med 1984;25:333–337PubMedGoogle Scholar
  22. 22.
    Krivokapitch J, Smith GT, Huang SC, Hoffman EJ, Ratib O, Phelps ME, et al. 13N-ammonia myocardial imaging at rest and with exercise in normal volunteers. Circulation 1989;80:1328–1337PubMedGoogle Scholar
  23. 23.
    Ohtake T, Kosaka N, Watanabe T, Yokoyama I, Moritan T, Masuo M, et al. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 1991;32:1432–1438PubMedGoogle Scholar
  24. 24.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7PubMedGoogle Scholar
  25. 25.
    Ng CK, Soufer R, McNulty PH. Effect of hyperinsulinemia on myocardial fluorine-18-FDG uptake. J Nucl Med 1998;39:379–383PubMedGoogle Scholar
  26. 26.
    Yokoyama I, Ohtake T, Momomura S, Yonekura K, Nishikawa J, Sasaki Y, et al. Hyperglycemia rather than insulin resistance is related to coronary flow reserve in patients with non-insulin dependent diabetes mellitus. Diabetes 1998;47:119–124PubMedCrossRefGoogle Scholar
  27. 27.
    DeFronzo RA, Tobin JD, Andes R. The glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol Endocrinol Metab 1979;237:E214–E223Google Scholar
  28. 28.
    Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004;89:463–478CrossRefPubMedGoogle Scholar
  29. 29.
    Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens 1998;16:895–906CrossRefPubMedGoogle Scholar
  30. 30.
    Lautamaki R, Airaksinen KE, Seppanen M, Toikka J, Luotolahti M, Ball E et al Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study. Diabetes 2005;54:2787–2794PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ikuo Yokoyama
    • 1
    • 2
  • Yusuke Inoue
    • 3
  • Toshiyuki Moritan
    • 4
  • Kuni Ohtomo
    • 5
  • Ryozo Nagai
    • 2
  1. 1.Department of Cardiovascular Medicine, Sanno HospitalInternational University of Health and WelfareMinato-kuJapan
  2. 2.Department of Cardiovascular Medicine, Graduate School of MedicineUniversity of TokyoTokyoJapan
  3. 3.Department of Radiology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
  4. 4.Department of Clinical Engineering, Faculty of Medical EngineeringSuzuka University of Medical ScienceSuzukaJapan
  5. 5.Department of Radiology, Graduate School of MedicineUniversity of TokyoTokyoJapan

Personalised recommendations