Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom

  • Walter KochEmail author
  • Perry E Radau
  • Wolfgang Münzing
  • Klaus Tatsch
Original article



SPECT examinations of neurotransmitter systems in the brain have to be comparable between centres to generate a comprehensive data pool, e.g. for multicentre studies. Equipment-specific effects on quantitative evaluations and corresponding methods for compensation, however, have been insufficiently examined. Previous studies have shown that quantitative results may vary significantly according to the imaging equipment used, thereby affecting clinical interpretation of the data. The aim of this study was to determine correction factors for common camera/collimator combinations based on standardised measurements of an anthropomorphic 3D basal ganglia phantom to compensate for the effects of different SPECT camera/collimator equipment. The latter may serve as a model for human studies of the dopaminergic system.


The striatum and background chambers of a commercially available phantom (RSD Alderson) were filled with various 123I concentrations encompassing specific striatum/background ratios from 0.6 to 16.1. This setup was imaged with the following four camera/collimator combinations: Siemens Multispect 3 fitted with LEHR and 123I parallel-hole collimators, Siemens ECAM with LEHR parallel-hole collimators and Philips Prism 3000 fitted with LEHR fanbeam collimators, using standardised protocols for acquisition and reconstruction. All scans were automatically co-registered to a SPECT template of the phantom and quantified using a 3D volume of interest (VOI) map based on a CT scan of the phantom. All striatal/background ratios calculated by SPECT were compared with the true ratios calculated from the measurements in a well counter. Regression analyses were performed and recovery correction factors between measured and true ratios determined.


The relation between true and measured ratios could be sufficiently described by a linear regression for each camera/collimator combination without relevant improvement when using second-order polynomial regression models. The recovery correction factors and standard errors were 2.04±0.04 for the Philips Prism 3000, 2.67±0.03 for the Siemens Multispect 3/LEHR parallel-hole collimators, 2.15±0.03 for the Siemens Multispect 3/123I collimators and 2.81±0.03 for the Siemens ECAM. Percentage recovery ranged from 36% to 49%.


Measurements of a 3D basal ganglia phantom with various imaging devices revealed linear correlations between measured and true striatal/background ratios. Based on these findings, adjustment of quantitative results between different equipment seems possible, provided that acquisition, reconstruction and evaluation are adequately standardised. The use of identical evaluation methods in phantom and patient studies (comparable shape, size and location of the VOIs) might allow transfer of the calculated correction factors from phantom to studies of the dopaminergic system in patients.


Basal ganglia Brain receptors  Neurotransmitters Brain SPECT Image processing 


  1. 1.
    Bergmann H, Busemann-Sokole E, Horton PW. Quality assurance and harmonisation of nuclear medicine investigations in Europe. Eur J Nucl Med 1995;22:477–480PubMedCrossRefGoogle Scholar
  2. 2.
    Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;44:839–845PubMedGoogle Scholar
  3. 3.
    Stodilka RZ, Kemp BJ, Prato FS, Nicholson RL. Importance of bone attenuation in brain SPECT quantification. J Nucl Med 1998;39:190–197PubMedGoogle Scholar
  4. 4.
    Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine D2 transporter ligands. Eur J Nucl Med Mol Imaging 2002;29:BP30–BP35PubMedCrossRefGoogle Scholar
  5. 5.
    Radau PE, Linke R, Slomka PJ, Tatsch K. Optimization of automated quantification of 123I-IBZM uptake in the striatum applied to parkinsonism. J Nucl Med 2000;41:220–227PubMedGoogle Scholar
  6. 6.
    Radau PE, Koch W, Holtmannspoetter M, Poepperl G, Tatsch K. Automated, objective software for 3D registration and analysis of dopamine transporter SPECT studies. J Nucl Med 2003;44:P12Google Scholar
  7. 7.
    Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med 2005;46:1109–1118PubMedGoogle Scholar
  8. 8.
    Koch W, Münzing W, Geworski L, Sonnenschein W, Höffken H, Czech N, et al Zentrumübergreifende Messungen an einem Basalganglienphantom zur Vereinheitlichung der SPECT Diagnostik des dopaminergen Systems. In: Brink I, editor. Nuklearmedizin als Paradigma molekularer Bildgebung. Berlin, Germany: Blackwell; 2002. p. 20Google Scholar
  9. 9.
    Hudson H, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:594–600CrossRefGoogle Scholar
  10. 10.
    Kauppinen T, Yang J, Kilpelainen H, Kuikka JT. Quantitation of neuroreceptors: a need for better SPECT imaging. Nuklearmedizin 2001;40:102–106PubMedGoogle Scholar
  11. 11.
    Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med 1999;40:753–761PubMedGoogle Scholar
  12. 12.
    Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, et al Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000;41:36–44PubMedGoogle Scholar
  13. 13.
    Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I, et al SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Neural Transm Gen Sect 1993;94:137–146PubMedCrossRefGoogle Scholar
  14. 14.
    Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 2000;27:161–169PubMedCrossRefGoogle Scholar
  15. 15.
    Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al European Association of Nuclear medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine D2 receptor ligands. Eur J Nucl Med Mol Imaging 2002;29:BP23–BP29PubMedCrossRefGoogle Scholar
  16. 16.
    Hamann C, Koch W, Radau PE, Tatsch K. Iterative reconstruction or filtered backprojection for quantitative assessment of dopamine d2 receptor studies? J Nucl Med 2003;44:114PGoogle Scholar
  17. 17.
    Hashimoto J, Kubo A, Ogawa K, Amano T, Fukuuchi Y, Motomura N, et al Scatter and attenuation correction in technetium-99m brain SPECT. J Nucl Med 1997;38:157–162PubMedGoogle Scholar
  18. 18.
    Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al Effects of scatter and attenuation correction on quantitative analysis of beta-CIT brain SPET. Nucl Med Commun 1999;20:159–165PubMedCrossRefGoogle Scholar
  19. 19.
    Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 2003;44:1184–1193PubMedGoogle Scholar
  20. 20.
    Yang J, Kuikka JT, Vanninen E, Kauppinen T, Lansimies E, Patomaki L. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data. Phantom and clinical patient studies. Nuklearmedizin 1999;38:49–55PubMedGoogle Scholar
  21. 21.
    Kauppinen T, Koskinen MO, Alenius S, Vanninen E, Kuikka JT. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction. Eur J Nucl Med 2000;27:1380–1386PubMedCrossRefGoogle Scholar
  22. 22.
    Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–2221PubMedGoogle Scholar
  23. 23.
    El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41:1400–1408PubMedGoogle Scholar
  24. 24.
    Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990;17:1011–1022PubMedCrossRefGoogle Scholar
  25. 25.
    Jaszczak RJ, Greer KL, Floyd CE Jr, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893–900PubMedGoogle Scholar
  26. 26.
    El Fakhri G, Moore SC, Maksud P, Aurengo A, Kijewski MF. Absolute activity quantitation in simultaneous 123I/99mTc brain SPECT. J Nucl Med 2001;42:300–308PubMedGoogle Scholar
  27. 27.
    Linke R, Gostomzyk J, Hahn K, Tatsch K. [123I]IPT binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–1812PubMedCrossRefGoogle Scholar
  28. 28.
    Hamann C, Koch W, Radau PE, Tatsch K. Automated evaluation of dopamine D2 receptor SPECT studies: Benefit in clinical routine? J Nucl Med 2003;44:P261–P262Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Walter Koch
    • 1
    Email author
  • Perry E Radau
    • 2
  • Wolfgang Münzing
    • 1
  • Klaus Tatsch
    • 1
  1. 1.Department of Nuclear MedicineUniversity of MunichMunichGermany
  2. 2.Department of Medical BiophysicsSunnybrook & Women’s College Health SciencesTorontoCanada

Personalised recommendations