Cell death triggered by alpha-emitting 213Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

  • Christof Seidl
  • Hedwig Schröck
  • Sabine Seidenschwang
  • Roswitha Beck
  • Ernst Schmid
  • Michael Abend
  • Karl-Friedrich Becker
  • Christos Apostolidis
  • Tuomo K. Nikula
  • Elisabeth Kremmer
  • Markus Schwaiger
  • Reingard Senekowitsch-Schmidtke
Original Article

Abstract

Purpose

Radioimmunotherapy with α-particle-emitting nuclides, such as 213Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by 213Bi-immunoconjugates.

Methods

Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of 213Bi-d9MAb targeting d9-E-cadherin and 213Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as 213Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and 213Bi-d9MAb was analysed via Western blotting.

Results

Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with 213Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of α-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific 213Bi-d9MAb compared with unspecific 213Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound 213Bi-immunoconjugates per cell exceeded 2×104, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by 213Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway.

Conclusion

213Bi-immunoconjugates seem to induce a mode of cell death different from apoptosis in HSC45-M2 cells.

Keywords

Alpha-emitter 213Bi Tumour-specific antibody MAA assay Chromosomal aberrations Caspase 3 activation 

References

  1. 1.
    Goldenberg DM. Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 2003;52:281–96.PubMedGoogle Scholar
  2. 2.
    Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, et al. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med 2003;44:465–74.PubMedGoogle Scholar
  3. 3.
    Bunjes D, Buchmann I, Duncker C, Seitz C, Kotzerke J, Wiesneth M, et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I–II study. Blood 2001;78:565–72.CrossRefGoogle Scholar
  4. 4.
    Behr TM, Liersch T, Greiner-Bechert L, Griesinger F, Behé MP, Markus PM, et al. Radioimmunotherapy of small-volume disease of metastatic colorectal cancer: results of a phase II trial with the iodine-131-labeled humanized anti-carcinoembryonic antigen antibody hMN-14. Cancer 2002;94:1373–81.PubMedGoogle Scholar
  5. 5.
    Kwekkeboom DJ, Bakker WH, Kam BL, Teunissen JJ, Kooij PPM, De Herder WW, et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumors with the novel radiolabelled somatostatin analogue [177Lu-DOTA0, Tyr3]octreotate. Eur J Nucl Med Mol Imaging 2003;30:417–22.PubMedGoogle Scholar
  6. 6.
    Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE, et al. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 2002;20:1389–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Riva P, Franceschi G, Frattarelli M, Riva N, Guiducci G, Cremonini AM, et al. 131I radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma: phase I and II study. Acta Oncol 1999;38:351–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Bodei L, Cremonesi M, Zoboli S, Grana C, Bartolomei M, Rocca P, et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging 2003;30:207–16.PubMedGoogle Scholar
  9. 9.
    Macklis RM, Lin JY, Beresford B, Atcher RW, Hines JJ, Humm JL. Cellular kinetics, dosimetry, and radiobiology of α-particle radioimmunotherapy: induction of apoptosis. Radiat Res 1992;130:220–6.PubMedGoogle Scholar
  10. 10.
    Bethge WA, Wilbur DS, Storb R, Hamlin DK, Santos EB, Brechbiel MW, et al. Selective T-cell ablation with bismuth-213-labeled anti-TCRαβ as nonmyeloablative conditioning for allogeneic canine marrow transplantation. Blood 2003;101:5068–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang M, Yao Z, Garmestani K, Axworthy DB, Zhang Z, Mallett RW, et al. Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide bismuth 213. Blood 2002;100:208–16.CrossRefPubMedGoogle Scholar
  12. 12.
    Supiot S, Faivre-Chauvet A, Couturier O, Heymann MF, Robillard N, Kraeber-Bodéré F, et al. Comparison of the biological effects of MA5 and B-B4 monoclonal antibody labeled with iodine-131 and bismuth-213 on multiple myeloma. Cancer 2002;94:1202–9.PubMedGoogle Scholar
  13. 13.
    McDevitt MR, Ma D, Lai LT, Simon J, Borchardt P, Frank RK, et al. Tumor therapy with targeted atomic nanogenerators. Science 2001;294:1537–40.Google Scholar
  14. 14.
    Andersson H, Elgqvist J, Horvath G, Hultborn R, Jacobsson L, Jensen H, et al. Astatine-211-labeled antibodies for treatment of disseminated ovarian cancer: an overview of results in an ovarian tumor model. Clin Cancer Res 2003;9:3914s–21s.PubMedGoogle Scholar
  15. 15.
    Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002;100:1233–9.PubMedGoogle Scholar
  16. 16.
    Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des 2000;6:1433–55.PubMedGoogle Scholar
  17. 17.
    Berx G, Becker K-F, Höfler H, van Roy F. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 1998;12:226–37.CrossRefPubMedGoogle Scholar
  18. 18.
    Becker K-F, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Höfler H. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 1994;54:3845–52.PubMedGoogle Scholar
  19. 19.
    Becker K-F, Kremmer E, Eulitz M, Becker I, Handschuh G, Schuhmacher C, et al. Analysis of E-cadherin in diffuse-type gastric cancer using a mutation-specific monoclonal antibody. Am J Pathol 1999;155:1803–9.PubMedGoogle Scholar
  20. 20.
    Senekowitsch-Schmidtke R, Schuhmacher C, Becker K-F, Nikula TK, Seidl C, Becker I, et al. Highly specific tumor binding of a 213Bi-labeled monoclonal antibody against mutant E-cadherin suggests its usefulness for locoregional α-radioimmunotherapy of diffuse-type gastric cancer. Cancer Res 2001;61:2804–8.PubMedGoogle Scholar
  21. 21.
    Miederer M, Seidl C, Beyer G-J, Charlton DE, Vranjes-Duric S, Comor JJ, et al. Comparison of the radiotoxicity of two alpha-particle-emitting immunoconjugates, terbium-149 and bismuth-213, directed against a tumor-specific, exon 9 deleted (d9) E-cadherin adhesion protein. Radiat Res 2003;159:612–20.PubMedGoogle Scholar
  22. 22.
    Huber R, Seidl C, Schmid E, Seidenschwang S, Becker K-F, Schuhmacher C, et al. Locoregional α-radioimmunotherapy of intraperitoneal tumor cell dissemination using a tumor specific monoclonal antibody. Clin Cancer Res 2003;9:3922s–28s.PubMedGoogle Scholar
  23. 23.
    Fulda S, Scaffidi C, Pietsch T, Krammer PH, Peter ME, Debatin KM. Activation of the CD95 (APO-1/Fas) pathway in drug- and gamma-irradiation-induced apoptosis of brain tumor cells. Cell Death Differ 1998;5:884–93.CrossRefPubMedGoogle Scholar
  24. 24.
    Friesen C, Lubatschofski A, Kotzerke J, Buchmann I, Reske SN, Debatin KM. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur J Nucl Med Mol Imaging 2003;30:1251–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Rizvi SMA, Ranson M, Allen BJ. 213Bi-PAI conjugate selectively induces apoptosis in PC3 metastatic prostate cancer cell line and shows anti-cancer activity in a xenograft animal model. Br J Cancer 2002;86:1197–203.CrossRefPubMedGoogle Scholar
  26. 26.
    Vandenbuckle K, De Vos F, Offner F, Philippé J, Apostolidis C, Molinet R, et al. In vitro evaluation of 213Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and the chromosomal damage. Eur J Nucl Med Mol Imaging 2003;30:1357–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Yanagihara K, Ito A, Toge T, Numoto M. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res 1993;53:5815–21.PubMedGoogle Scholar
  28. 28.
    Fukudome Y, Yanagihara K, Takeichi M, Ito F, Shibamoto S. Characterization of a mutant E-cadherin protein encoded by a mutant gene frequently seen in diffuse-type human gastric carcinoma. Int J Cancer 2000;88:579–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Becker K-F, Kremmer E, Eulitz M, Schulz S, Mages J, Handschuh G, et al. Functional allelic loss detected at the protein level in archival human tumours using allele-specific E-cadherin monoclonal antibodies. J Pathol 2002;197:567–74.CrossRefPubMedGoogle Scholar
  30. 30.
    Mirzadeh S, Brechbiel MW, Atcher RW, Gansow OA. Radiometal labeling of immunoproteins: covalent linkage of 2-(4-isothiocyanatobenzyl) diethylenetriaminepentaacetic acid ligands to immunoglobulin. Bioconjug Chem 1990;1:59–65.PubMedGoogle Scholar
  31. 31.
    Apostolidis C, Carlos-Marquez R, Janssens W, Molinet R, Nikula T, Ouadi A. Cancer treatment using Bi-213 and Ac-225 in radioimmunotherapy. Nucl News 2001;44:29–33.Google Scholar
  32. 32.
    Spivakov BY, Stoyanov ES, Gribov LA, Zolotov YA. Raman laser spectroscopic studies of bismuth(III)halide complexes in aqueous solution. J Inorg Nucl Chem 1979;14:453–5.CrossRefGoogle Scholar
  33. 33.
    Nikula TK, Curcio MJ, Brechbiel MW, Gansow OA, Finn RD, Scheinberg DA. A rapid, single vessel method for preparation of clinical grade ligand conjugated antibodies. Nucl Med Biol 1995;22:387–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Abend M, Kehe K, Kehe K, Riedel M, van Beuningen D. Correlation of micronucleus and apoptosis assays with reproductive cell death can be improved by considering other modes of death. Int J Radiat Biol 2000;76:249–59.CrossRefPubMedGoogle Scholar
  35. 35.
    Teramachi K, Izawa M. Rapid induction of apoptosis in human gastric cancer cell lines by sorbitol. Apoptosis 2000;5:181–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Mai JC, Mi Z, Kim SH, Ng B, Robbins PD. A proapoptotic peptide for the treatment of solid tumors. Cancer Res 2001;6:7709–12.Google Scholar
  37. 37.
    Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev 2004;23:34–44.CrossRefPubMedGoogle Scholar
  38. 38.
    Melle C, Ernst G, Schimmel B, Bleul A, Koscielny S, Wiesner A, et al. Biomarker discovery and identification in laser microdissected head and neck squamous cell carcinoma with ProteinChip® technology, two-dimensional gel electrophoresis, tandem mass spectrometry, and immunohistochemistry. Mol Cell Proteomics 2003;2:443–52.PubMedGoogle Scholar
  39. 39.
    Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F, et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002;62:1868–75.PubMedGoogle Scholar
  40. 40.
    Armstrong RC, Aja T, Xiang J, Gaur S, Krebs JF, Hoang K, et al. Fas-induced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors. J Biol Chem 1996;271:16850–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O’Brien GA, et al. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J 1996;15:2407–16.PubMedGoogle Scholar
  42. 42.
    Kennel SJ, Stabin M, Roeske JC, Foote LJ, Lankford PK, Terzaghi-Howe M, et al. Radiotoxicity of bismuth-213 bound to membranes of monolayer and spheroid cultures of tumor cells. Radiat Res 1999;151:244–56.PubMedGoogle Scholar
  43. 43.
    Schipper ML, Weber A, Béhé M, Göke R, Joba W, Schmidt H, et al. Radioiodide treatment after sodium iodide symporter gene transfer is a highly effective therapy in neuroendocrine tumor cells. Cancer Res 2003;63:1333–8.PubMedGoogle Scholar
  44. 44.
    Slee EA, Zhu H, Chow SC, MacFarlane M, Nicholson DW, Cohen GM. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD-FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J 1996;315:21–4.PubMedGoogle Scholar
  45. 45.
    Holgersson A, Jernberg AR, Persson LM, Edgren MR, Lewensohn R, Nilsson A, et al. Low and high LET radiation-induced apoptosis in M059J and M059K cells. Int J Radiat Biol 2003;79:611–21.CrossRefPubMedGoogle Scholar
  46. 46.
    De Bruin EC, Meersma D, de Wilde J, den Otter I, Schipper EM, Medema JP, Peltenburg LTC. A serine protease is involved in the initiation of DNA damage-induced apoptosis. Cell Death Differ 2003;10:1204–12.CrossRefPubMedGoogle Scholar
  47. 47.
    Zangger H, Mottram JC, Fasel N. Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 2002;9:1126–39.CrossRefPubMedGoogle Scholar
  48. 48.
    Wilson CA, Browning JL. Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ 2002;9:1321–33.CrossRefPubMedGoogle Scholar
  49. 49.
    Pouget J-P, Mather SJ. General aspects of the cellular response to low- and high-LET radiation. Eur J Nucl Med 2001;28:541–61.CrossRefPubMedGoogle Scholar
  50. 50.
    Abend M. Reasons to reconsider the significance of apoptosis for cancer therapy. Int J Radiat Biol 2003;79:927–41.CrossRefPubMedGoogle Scholar
  51. 51.
    Ritter MA, Cleaver JE, Tobias CA. High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 1977;266:653–5.PubMedGoogle Scholar
  52. 52.
    Heilmann J, Taucher-Scholz G, Haberer T, Scholz M, Kraft G. Measurement of intracellular DNA double-strand break induction and rejoining along the track of carbon and neon particle beams in water. Int J Radiat Oncol 1996;34:599–608.CrossRefGoogle Scholar
  53. 53.
    Gundkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 2003;3:117–29.CrossRefPubMedGoogle Scholar
  54. 54.
    Rudner J, Lepple-Wienhues A, Budach W, Berschauer J, Friedrich B, Wesselborg S, et al. Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci 2001;114:4161–72.PubMedGoogle Scholar
  55. 55.
    Vispe S, Cazaux C, Lesca C, Defais M. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res 1998;26:2859–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Christof Seidl
    • 1
  • Hedwig Schröck
    • 1
  • Sabine Seidenschwang
    • 1
  • Roswitha Beck
    • 1
  • Ernst Schmid
    • 2
  • Michael Abend
    • 3
  • Karl-Friedrich Becker
    • 4
    • 5
    • 6
  • Christos Apostolidis
    • 7
  • Tuomo K. Nikula
    • 7
  • Elisabeth Kremmer
    • 6
  • Markus Schwaiger
    • 1
  • Reingard Senekowitsch-Schmidtke
    • 1
  1. 1.Department of Nuclear MedicineTechnische Universität MünchenMunichGermany
  2. 2.Institute of Radiation Biology, GSFNational Research Center for Environment and HealthNeuherbergGermany
  3. 3.Institute of RadiobiologyGerman Armed ForcesMunichGermany
  4. 4.Institute of PathologyTechnische Universität MünchenMunichGermany
  5. 5.Institute of Pathology, GSFNational Research Center for Environment and HealthNeuherbergGermany
  6. 6.Institute of Molecular Immunology, GSFNational Research Center for Environment and HealthMunichGermany
  7. 7.Institute for Transuranium ElementsEuropean CommissionKarlsruheGermany

Personalised recommendations