Imaging of unstable atherosclerotic lesions



  1. 1.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44PubMedGoogle Scholar
  2. 2.
    Narula J, Virmani R, Iskandrian AE. Strategic targeting of atherosclerotic lesions. J Nucl Cardiol 1999;6(1 Pt 1):81–90Google Scholar
  3. 3.
    Peebles CR. Non-invasive coronary imaging: computed tomography or magnetic resonance imaging? Heart 2003;89:591–594CrossRefPubMedGoogle Scholar
  4. 4.
    Davies MJ, Thomas AC. Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985;53:363–373PubMedGoogle Scholar
  5. 5.
    Kolodgie FD, Narula J, Burke AP, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000;157:1259–1268PubMedGoogle Scholar
  6. 6.
    Falk E. Why do plaques rupture? Circulation 1992;86(Suppl 6):III30–III42Google Scholar
  7. 7.
    Mizuno K, Miyamoto A, Satomura K, et al. Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991;337:809–812CrossRefPubMedGoogle Scholar
  8. 8.
    Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 1996;28:1–6CrossRefPubMedGoogle Scholar
  9. 9.
    Gussenhoven EJ, Essed CE, Lancee CT, et al. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 1989;14:947–952PubMedGoogle Scholar
  10. 10.
    Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, Leon MB. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 1990;81:1575–1585PubMedGoogle Scholar
  11. 11.
    Brezinski ME, Tearney GJ, Bouma BE, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 1996;93:1206–1213PubMedGoogle Scholar
  12. 12.
    Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002;106:1640–1645CrossRefPubMedGoogle Scholar
  13. 13.
    de Korte CL, van der Steen AF, Cespedes EI, Pasterkamp G. Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound Med Biol 1998;24:401–408CrossRefPubMedGoogle Scholar
  14. 14.
    de Korte CL, Carlier SG, Mastik F, Doyley MM, van der Steen AF, Serruys PW, Bom N. Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo. Eur Heart J 2002;23:405–413CrossRefPubMedGoogle Scholar
  15. 15.
    Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med 1995;1:69–73CrossRefPubMedGoogle Scholar
  16. 16.
    Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001;103:415–422PubMedGoogle Scholar
  17. 17.
    Wentzel JJ, Aguiar SH, Fayad ZA. Vascular MRI in the diagnosis and therapy of the high risk atherosclerotic plaque. J Interv Cardiol 2003;16:129–142PubMedGoogle Scholar
  18. 18.
    Stefanadis C, Diamantopoulos L, Vlachopoulos C, et al. Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation 1999;99:1965–1971PubMedGoogle Scholar
  19. 19.
    Narula J, Virmani R, et al. Radionuclide imaging of atherosclerotic lesions. In: Dilsizian V, Narula J, Braunwald E, eds. Atlas of nuclear cardiology. Philadelphia: Current Medicine, 2003Google Scholar
  20. 20.
    Blankenberg S, Rupprecht HJ, Bickel C, et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 2003;349:1605–1613CrossRefPubMedGoogle Scholar
  21. 21.
    Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 2003;349:1595–1604CrossRefPubMedGoogle Scholar
  22. 22.
    Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003;107:499–511CrossRefPubMedGoogle Scholar
  23. 23.
    American Heart Association. Heart disease and stroke statistics—2004 update. Dallas: American Heart Association; 2004Google Scholar
  24. 24.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997;336:1276–1282CrossRefPubMedGoogle Scholar
  25. 25.
    Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994;344:793–795CrossRefPubMedGoogle Scholar
  26. 26.
    Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92:1355–1374PubMedGoogle Scholar
  27. 27.
    Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 1984;4:323–340PubMedGoogle Scholar
  28. 28.
    Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev 2003;83:1069–1112PubMedGoogle Scholar
  29. 29.
    Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984;310:175–177PubMedGoogle Scholar
  30. 30.
    Zamir M, Silver MD. Vasculature in the walls of human coronary arteries. Arch Pathol Lab Med 1985;109:659–662PubMedGoogle Scholar
  31. 31.
    Kamat BR, Galli SJ, Barger AC, Lainey LL, Silverman KJ. Neovascularization and coronary atherosclerotic plaque: cinematographic localization and quantitative histologic analysis. Hum Pathol 1987;18:1036–1042PubMedGoogle Scholar
  32. 32.
    Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 1994;14:840–856PubMedGoogle Scholar
  33. 33.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275PubMedGoogle Scholar
  34. 34.
    Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493–2503PubMedGoogle Scholar
  35. 35.
    Nelken NA, Coughlin SR, Gordon D, Wilcox JN. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 1991;88:1121–1127PubMedGoogle Scholar
  36. 36.
    Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993;171:223–229PubMedGoogle Scholar
  37. 37.
    O’Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 1993;92:945–951PubMedGoogle Scholar
  38. 38.
    Khoo JC, Miller E, McLoughlin P, Steinberg D. Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 1988;8:348–358PubMedGoogle Scholar
  39. 39.
    Khoo JC, Miller E, Pio F, Steinberg D, Witztum JL. Monoclonal antibodies against LDL further enhance macrophage uptake of LDL aggregates. Arterioscler Thromb 1992;12:1258–1266PubMedGoogle Scholar
  40. 40.
    Steinberg D. Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 1997;95:1062–1071PubMedGoogle Scholar
  41. 41.
    Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study. Circulation 2001;104:203–208PubMedGoogle Scholar
  42. 42.
    Petrov A, Hartung D, et al. Imaging inflammation in atherosclerotic lesions by radiolabeled chemotactic peptide: would identification of vulnerable plaques become feasible? J Am Coll Cardiol 2003;41(Suppl):II-445Google Scholar
  43. 43.
    Isobe M, Ohtani H, Yagita H, Okumura K, Strauss HW, Yazaki Y. Detection of cardiac rejection in mice by radioimmune scintigraphy using 123iodine-labeled anti-ICAM-1 monoclonal antibody. Acta Cardiol 1993;48:235–243PubMedGoogle Scholar
  44. 44.
    Sadeghi M, Schechner J, et al. Noninvasive detection of endothelial activation. Fiftieth Am College Cardiol, Orlando 2001;37:424AGoogle Scholar
  45. 45.
    Isobe M, Narula J, Southern JF, Strauss HW, Khaw BA, Haber E. Imaging the rejecting heart. In vivo detection of major histocompatibility complex class II antigen induction. Circulation 1992;85:738–746PubMedGoogle Scholar
  46. 46.
    Steinberg D, Witzum JL. Lipoproteins, lipoprotein oxidation, and atherogenesis. In: Cheien KR, ed. Molecular basis of cardiovascular disease. Philadelphia: Saunders; 1998:458–476Google Scholar
  47. 47.
    Lees RS, Lees AM, Strauss HW. External imaging of human atherosclerosis. J Nucl Med 1983;24:154–156PubMedGoogle Scholar
  48. 48.
    DeForge LE, Schwendner SW, DeGalan MR, McConnell DS, Counsell RE. Noninvasive assessment of lipid disposition in treated and untreated atherosclerotic rabbits. Pharm Res 1989;6:1011–1016CrossRefPubMedGoogle Scholar
  49. 49.
    Hardoff R, Braegelmann F, Zanzonico P, et al. External imaging of atherosclerosis in rabbits using an 123I-labeled synthetic peptide fragment. J Clin Pharmacol 1993;33:1039–1047PubMedGoogle Scholar
  50. 50.
    Rubin RH, Fischman AJ. The use of radiolabeled nonspecific immunoglobulin in the detection of focal inflammation. Semin Nucl Med 1994;24:169–179PubMedGoogle Scholar
  51. 51.
    Carpenter KL, Challis IR, Arends MJ. Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2 and PPARgamma. FEBS Lett 2003;553:145–150CrossRefPubMedGoogle Scholar
  52. 52.
    Baumgartener H. Eine neue Methode zur Erzeugung von Thromben durch gezielte Überdehnung der Gefässwand. Zentralbl Gesamte Exp Med 1963;137:227–249Google Scholar
  53. 53.
    Kolodgie FD, Petrov A, Virmani R, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003;108:3134–3139CrossRefPubMedGoogle Scholar
  54. 54.
    Kietselaer B, Reutelingsperger C, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, Narula J. Non-invasive detection of plaque instability using radiolabeled annexin-V in patients with atherosclerotic carotid artery disease. N Engl J Med 2004;350:1472–1473CrossRefGoogle Scholar
  55. 55.
    Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995;36:1301–1306PubMedGoogle Scholar
  56. 56.
    Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 2001;26:314–319CrossRefPubMedGoogle Scholar
  57. 57.
    Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 2003;229:831–837PubMedGoogle Scholar
  58. 58.
    Dunphy M, Freiman A, et al. Detecting F-18 FDG in the coronary arteries, aorta, carotids and iliac vessels: comparison to vascular calcification. J Nucl Med 2003;55:58PGoogle Scholar
  59. 59.
    Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–2711CrossRefPubMedGoogle Scholar
  60. 60.
    Johnson L, Narula N, et al. Tc-99m-annexin-V imaging for detection of atherosclerotic lesions in porcine coronary artery. J Am Coll Cardiol 2003:445AGoogle Scholar
  61. 61.
    Lederman RJ, Raylman RR, Fisher SJ, Kison PV, San H, Nabel EG, Wahl RL. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Commun 2001;22:747–753CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Cardiology DivisionUCI Medical CenterOrangeUSA
  2. 2.Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations