201Tl-SPECT in low-grade gliomas: diagnostic accuracy in differential diagnosis between tumour recurrence and radionecrosis

  • Manuel Gómez-Río
  • Dolores Martínez del Valle Torres
  • Antonio Rodríguez-Fernández
  • José Manuel Llamas-Elvira
  • Simeón Ortega Lozano
  • Carlos Ramos Font
  • Escarlata López Ramírez
  • Majed Katati
Original Article



The aim of this work was to describe the usefulness of a simple 201Tl single-photon emission computed tomography (SPECT) technique in the differential diagnosis between tumour recurrence and radionecrosis during the follow-up of patients treated for low-grade gliomas.


The study population comprised 84 patients treated for low-grade gliomas who showed suspicion of tumour recurrence during their follow-up. All patients were examined by neuro-anatomical imaging procedures (CT, MRI) and 201Tl-SPECT. 201Tl-SPECT images were assessed by visual analysis based only on the information on the prescription form and by estimation of the uptake index (ratio of mean counts in the lesion to those in the contralateral mirror area). Examiners were blinded to the results of other tests.


Under these conditions, the neuro-anatomical procedures yielded 26.2% inconclusive reports, with a global diagnostic accuracy of 0.61, a sensitivity of 0.63 and a specificity of 0.59. The global diagnostic accuracy for 201Tl-SPECT was 0.83, with a sensitivity of 0.88 and a specificity of 0.76. Diagnostic pitfalls were observed in regions with physiological 201Tl uptake, i.e. the posterior cranial fossa, diencephalon, lateral ventricles and cavernous and longitudinal venous sinuses. An uptake index cut-off value of 1.25 showed a sensitivity of 0.90 and specificity of 0.80 for detection of tumour activity.


201Tl-SPECT has adequate diagnostic accuracy to be part of routine algorithms in the follow-up of patients with low-grade glioma suspected of tumour recurrence, as an alternative to neuro-anatomical procedures and not solely as a complementary test.


201Tl-SPECT Low-grade gliomas Radionecrosis Glioma recurrence Diagnostic accuracy 



The authors are grateful to Richard Davis for assistance with the English version of this text.


  1. 1.
    De Angelis LM. Brain tumors. N Engl J Med 2001; 344:114–123.CrossRefPubMedGoogle Scholar
  2. 2.
    Recht LD, Bernstein M. Low-grade gliomas. Neurol Clin 1995; 14:847–860.Google Scholar
  3. 3.
    Kleihues P, Cavenee WK, eds. Tumours of the nervous system. Pathology and genetics. Lyon: International Agency for Research on Cancer (IARC), 2000.Google Scholar
  4. 4.
    Ashby LS. Low-grade gliomas: when and how to treat. In: Perry MC, ed. American Society of Clinical Oncology. Educational Book. Alexandria (VA): ASCO; 2000:688–695.Google Scholar
  5. 5.
    Bénard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single photon emission computed tomography. Semin Nucl Med 2003; 33:148–162.CrossRefPubMedGoogle Scholar
  6. 6.
    Kim KT, Black KL, Marciano D, et al. Thallium-201 SPECT imaging of brain tumors: methods and results. J Nucl Med 1990; 31:965–969.PubMedGoogle Scholar
  7. 7.
    Van Veelen Ml, Avezaat CJ, Kros JM, et al. Supratentorial low grade astrocytoma: prognostic factors, dedifferentiation and the issue of early versus late surgery. J Neurol Neurosurg Psychiatry 1998; 64:581–587.PubMedGoogle Scholar
  8. 8.
    Soler C, Beachesne P, Maataougui K, et al. Technetium-99m sestamibi brain SPECT for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 1998; 25:1649–1657.PubMedGoogle Scholar
  9. 9.
    Sasaki M, Kuwabara Y, Yoshida T, et al. A comparative study of thallium-201 SPECT, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 1998; 25:1261–1269.CrossRefPubMedGoogle Scholar
  10. 10.
    Rubinstein R, Karger H, Pietrzyk U, et al. Use of201thallium brain SPECT, imaging registration, and semi-quantitative analysis in the follow-up of brain tumors. Eur J Radiol 1996; 21:188–195.CrossRefPubMedGoogle Scholar
  11. 11.
    Ricci PE. Imaging of adult brain tumors. Neuroimagin Clin North Am 1999; 9:651–669.Google Scholar
  12. 12.
    Nelson SJ. Imaging of brain tumors after therapy. Neuroimagin Clin North Am 1999; 9:801–819.Google Scholar
  13. 13.
    Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MRI for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 2000; 21:901–909.PubMedGoogle Scholar
  14. 14.
    Black KL, Hawkins RA, Kim KT, et al. Use of thallium-201 SPECT to quantitate malignancy grade of gliomas. J Neurosurg 1989; 71:342–346.PubMedGoogle Scholar
  15. 15.
    Dierckx RA, Martin JJ, Dobbeleir A, et al. Sensitivity and specificity of thallium-201 SPECT in the functional detection and differential diagnosis of brain tumours. Eur J Nucl Med 1994; 21:621–633.PubMedGoogle Scholar
  16. 16.
    Isibashi M, Taguchi A, Sugita Y, et al. Thallium-201 in brain tumors: relationship between tumor cell activity in astrocytic tumor and proliferating cell nuclear antigen. J Nucl Med 1995; 36:2201–2206.PubMedGoogle Scholar
  17. 17.
    Källén K, Heiling A-M, Brun A, et al. Preoperative grading of glioma malignancy with thallium-201 SPECT: comparison with conventional CT. Am J Neuroradiol 1996; 17:925–932.PubMedGoogle Scholar
  18. 18.
    Da Sun, Liu Q, Liu W, et al. Clinical applications of201Tl-SPECT imaging of brain tumors. J Nucl Med 2000; 41:5–10.PubMedGoogle Scholar
  19. 19.
    Kline JL, Noto RN, Glantz M. SPECT in the evaluation of recurrent brain tumor in patients treated with gamma knife radiosurgery or conventional radiation therapy. Am J Neuroradiol 1996; 17:1681–1686.PubMedGoogle Scholar
  20. 20.
    Oriuchi N, Tomiyoshi K, Inoue T, et al. Independent thallium-201 accumulation and fluorine-18-FDG metabolism in glioma. J Nucl Med 1996; 37:457–462.PubMedGoogle Scholar
  21. 21.
    Oriuchi N, Tamura M, Shibazaki T, et al. Clinical evaluation of thallium-201 SPECT in supratentorial gliomas: relationship to histologic grade, prognosis and proliferative activities. J Nucl Med 1993; 34:2085–2089.PubMedGoogle Scholar
  22. 22.
    Moustafa HM, Omar WM, Ezzat I, et al.201Tl SPECT in the evaluation of residual and recurrent astrocytoma. Nucl Med Commun 1994; 15:140–143.PubMedGoogle Scholar
  23. 23.
    Staffen W, Hondl N, Trinka E, et al. Clinical relevance of201Tl-chloride SPECT in the differential diagnosis of brain tumours. Nucl Med Commun 1998; 19:335–340.PubMedGoogle Scholar
  24. 24.
    Stokkel M, Stevens H, Taphoorn M, et al. Differentiation between recurrent brain tumour and post-radiation necrosis: the value of201Tl-SPECT versus 18F-FDG PET using a dual-headed coincidence camera—a pilot study. Nucl Med Commun 1999; 20:411–417.PubMedGoogle Scholar
  25. 25.
    Kaplan WD, Takvorian T, Morris JH, et al. Thallium-201 brain imaging: a comparative study with pathological correlation. J Nucl Med 1987; 28:47–52.PubMedGoogle Scholar
  26. 26.
    Sehweil AM, McKillop JH, Milroy R, et al. Mechanism of Tl-201 uptake in tumours. Eur J Nucl Med 1989; 15:376–379.PubMedGoogle Scholar
  27. 27.
    Cicciarello R, d’Avella D, Gagliardi ME, et al. Time-related ultrastructural changes in an experimental model of whole brain irradiation. Neurosurgery 1996; 38:772–780.PubMedGoogle Scholar
  28. 28.
    Brismar T, Collins VP, Kesselberg M. Thallium-201 uptake relates to membrane potential and potassium permeability in human glioma cells. Brain Res 1989; 500:30–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Gomez-Río M, Martínez del Valle MD, Rodríguez-Fernández A, et al. Radionecrosis vs tumoral recurrence in brain tumors: diagnosis using Tl-201·SPECT [abstract]. Eur J Nucl Med 1998; 25:922.Google Scholar
  30. 30.
    Martínez del Valle MD, Gómez-Río M, Rodríguez-Fernández A, et al. Usefulness of Tl-201 SPECT in the diagnosis of radionecrosis versus tumoral recurrence in low grade glial tumours [abstract]. Eur J Nucl Med 2002; 29 [Suppl 1]: S229.Google Scholar
  31. 31.
    Sabbah P, Foehrenbach H, Dutertre G, et al. Multimodal anatomic, functional and metabolic brain imaging for tumor resection. J Clin Imaging 2002; 26:6–12.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Manuel Gómez-Río
    • 1
  • Dolores Martínez del Valle Torres
    • 1
  • Antonio Rodríguez-Fernández
    • 1
  • José Manuel Llamas-Elvira
    • 1
  • Simeón Ortega Lozano
    • 1
  • Carlos Ramos Font
    • 1
  • Escarlata López Ramírez
    • 2
  • Majed Katati
    • 3
  1. 1.Department of Nuclear Medicine“Virgen de las Nieves” University HospitalGranadaSpain
  2. 2.Department of Radiotherapeutic Oncology“Virgen de las Nieves” University HospitalGranadaSpain
  3. 3.Department of Neurosurgery“Virgen de las Nieves” University HospitalGranadaSpain

Personalised recommendations