Advertisement

A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging

  • Vladimir Ponomarev
  • Michael Doubrovin
  • Inna Serganova
  • Jelena Vider
  • Aleksander Shavrin
  • Tatiana Beresten
  • Anna Ivanova
  • Ludmila Ageyeva
  • Vilia Tourkova
  • Julius Balatoni
  • William Bornmann
  • Ronald Blasberg
  • Juri Gelovani TjuvajevEmail author
Molecular Imaging

Abstract

Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (Δ45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or Δ45HSV1-tk/GFP/luciferase (Δ45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (~130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-Δ45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-Δ45-TGL cells compared to nontransduced control cells. The Ki of 14C-FIAU was 0.49±0.02, 0.51±0.03, and 0.003±0.001 ml/min/g in U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [131I]FIAU (7.4 MBq/animal) or [124I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity in the wild-type xenografts. Tissue sampling yielded values of 0.47%±0.08%, 0.86%±0.06%, and 0.03%±0.01%dose/g [131I]FIAU in U87-NES-TGL, U87-Δ45-TGL, and U87 xenografts, respectively. The TGL triple-fusion reporter gene preserves the functional activity of its subunits and is very effective for multimodality imaging. It provides for the seamless transition from fluorescence microscopy and FACS to whole-body bioluminescence imaging, to nuclear (PET, SPET, gamma camera) imaging, and back to in situ fluorescence image analysis.

Keywords

Molecular imaging Multimodality imaging Herpes virus type one Thymidine kinase Green fluorescent protein Luciferase FIAU 

References

  1. 1.
    Blasberg RG, Tjuvajev JG. Herpes simplex virus thymidine kinase as a marker/reporter gene for PET imaging of gene therapy. Q J Nucl Med 1999; 43:163–169.PubMedGoogle Scholar
  2. 2.
    Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, Phelps ME, Larson SM, Balatoni J, Finn R, Sadelain M, Tjuvajev J, Blasberg R. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000; 2:118–138.PubMedGoogle Scholar
  3. 3.
    Gelovani Tjuvajev J, Blasberg R. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 2003; 3:327–332.PubMedGoogle Scholar
  4. 4.
    Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani Tjuvajev J. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 2001; 98:9300–9305.CrossRefPubMedGoogle Scholar
  5. 5.
    Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, Finn R, Akhurst T, Larson S, Blasberg R, Sadelain M, Tjuvajev JG. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 2001; 3:480–488.CrossRefPubMedGoogle Scholar
  6. 6.
    Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, Iruela-Arispe ML, Wu L. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002; 8:891–897.PubMedGoogle Scholar
  7. 7.
    Luker GD, Sharma V, Pica CM, Dahlheimer JL, Li W, Ochesky J, Ryan CE, Piwnica-Worms H, Piwnica-Worms D. Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci U S A 2002; 99:6961–6966.CrossRefPubMedGoogle Scholar
  8. 8.
    Serganova I, Ponomarev V, Doubrovin M, Ageyeva L, Beresten T, Soghomonian S, Balatoni J, Finn R, Blasberg R, Gelovani Tjuvajev JG. Successful generation of reporter system for non-invasive imaging of the TGFb signal transduction pathway activity with positron emission tomography In Vivo. ASGT 5th Annual Meeting, Boston, June 5–9, 2002.Google Scholar
  9. 9.
    Resnicoff M, Tjuvajev J, Rotman HL, Abraham D, Curtis M, Aiken R, Baserga R. Regression of C6 rat brain tumors by cells expressing an antisense insulin-like growth factor I receptor RNA. J Exp Ther Oncol 1996; 1:385–389.PubMedGoogle Scholar
  10. 10.
    De A, Lewis XZ, Gambhir SS. Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 2003; 7:681–691.CrossRefPubMedGoogle Scholar
  11. 11.
    Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, Bauer E, Parrish C, MacLaren DC, Borghei AR, Green LA, Sharfstein S, Berk AJ, Cherry SR, Phelps ME, Herschman HR. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998; 39:2003–2011.PubMedGoogle Scholar
  12. 12.
    Bennett JJ, Tjuvajev J, Johnson P, Doubrovin M, Akhurst T, Malholtra S, Hackman T, Balatoni J, Finn R, Larson SM, Federoff H, Blasberg R, Fong Y. Positron emission tomography imaging for herpes virus infection: implications for oncolytic viral treatments of cancer. Nat Med 2001; 7:859–863.CrossRefPubMedGoogle Scholar
  13. 13.
    Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, Balatoni J, Teruya-Feldstein J, Heller G, May C, Ponomarev V, Ruan S, Finn R, Blasberg RG, Bornmann W, Riviere I, Sadelain M, O’Reilly RJ, Larson SM, Gelovani Tjuvajev JG. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 2003; 21:405-413.CrossRefPubMedGoogle Scholar
  14. 14.
    Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, Gambhir SS, Witte ON. Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A 2003; 100:1232–1237.CrossRefPubMedGoogle Scholar
  15. 15.
    Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG. Imaging the expression of transfected genes in vivo. Cancer Res 1995; 55:6126–6132.PubMedGoogle Scholar
  16. 16.
    Jacobs A, Tjuvajev JG, Dubrovin M, Akhurst T, Balatoni J, Beattie B, Joshi R, Finn R, Larson SM, Herrlinger U, Pechan PA, Chiocca EA, Breakefield XO, Blasberg RG. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 2001; 61:2983–2995.PubMedGoogle Scholar
  17. 17.
    Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, Safer M, Beattie B, DiResta G, Daghighian F, Augensen F, Koutcher J, Zweit J, Humm J, Larson SM, Finn R, Blasberg R. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998; 58:4333–4341.PubMedGoogle Scholar
  18. 18.
    Ponomarev V, Doubrovin M, Serganova I, Beresten T, Vider J, Shavrin A, Ageeva L, Balatoni J, Blasberg R, Gelovani Tjuvajev J. Cytoplasmically retargeted HSV1-tk/GFP reporter gene mutants for optimization of non-invasive molecular-genetic imaging. Neoplasia 2003; 5:245–254.PubMedGoogle Scholar
  19. 19.
    Doubrovin M, Ponomarev V, Serganova I, Soghomonian S, Myagawa T, Beresten T, Ageyeva L, Sadelain M, Koutcher J, Blasberg RJ. Tjuvajev JG. Development of a new reporter gene system—dsRed/xanthine phosphoribosyltransferase-xanthine for molecular imaging of processes behind the intact blood-brain barrier. Mol Imaging 2003; 2:93–112.CrossRefPubMedGoogle Scholar
  20. 20.
    Dubrovin M, Ponomarev V, Beresten T, Matei C, Koutcher J, Tjuvajev J. In vivo19F nuclear magnetic resonance measurements of enhanced 5FU conversion to fluoronucleotides after UPRT gene transduction [abstract]. 3rd Annual Meeting of the ASGT, Denver, CO, May 31–June 4, 2000.Google Scholar
  21. 21.
    Ponomarev V, Doubrovin M, Serganova I, Ageyeva L, Beresten T, Sagomonyan S, Balatoni J, Finn R, Blasberg R, Gelovani Tjuvajev JG. Human thymidine kinase type 2—a novel non-immunogenic reporter gene for non-invasive imaging in humans. AACR meeting: Molecular imaging in cancer, Orlando, Fl, January 23–27, 2002.Google Scholar
  22. 22.
    Liang Q, Satyamurthy N, Barrio JR, Toyokuni T, Phelps MP, Gambhir SS, Herschman HR. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001; 8:1490–1498.PubMedGoogle Scholar
  23. 23.
    Rogers BE, Zinn KR, Buchsbaum DJ. Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med 2000; 3:208–223.Google Scholar
  24. 24.
    Brust P, Haubner R, Friedrich A, Scheunemann M, Anton M, Koufaki ON, Hauses M, Noll S, Noll B, Haberkorn U, Schackert G, Schackert HK, Avril N, Johannsen B. Comparison of [18F]FHPG and [124/125I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression. Eur J Nucl Med 2001; 28:721–729.PubMedGoogle Scholar
  25. 25.
    Stegman LD, Rehemtulla A, Beattie B, Kievit E, Lawrence TS, Blasberg RG, Tjuvajev JG, Ross BD. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 1999; 96:9821–9826.PubMedGoogle Scholar
  26. 26.
    Hackman T, Doubrovin M, Balatoni J, Beresten T, Ponomarev V, Beattie B, Finn R, Bornmann W, Blasberg R, Gelovani Tjuvajev J. Imaging expression of cytosine deaminase-herpes virus thymidine kinase fusion gene (CD/TK) expression with [124I]FIAU and PET. Mol Imaging 2002; 1:36–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Hadjantonakis AK, Nagy A. The color of mice: in the light of GFP-variant reporters. Histochem Cell Biol 2001; 115:49–58.PubMedGoogle Scholar
  28. 28.
    Falk MM, Lauf U. High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech 2001; 52:251–262.PubMedGoogle Scholar
  29. 29.
    Ellenberg J, Lippincott-Schwartz J, Presley JF. Dual-colour imaging with GFP variants. Trends Cell Biol 1999; 9:52–56.PubMedGoogle Scholar
  30. 30.
    Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000; 2:41–52.PubMedGoogle Scholar
  31. 31.
    Levy JP, Muldoon RR, Zolotukhin S, Link CJ Jr. Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells. Nat Biotechnol 1996; 14:610–614.PubMedGoogle Scholar
  32. 32.
    Lalwani AK, Han JJ, Walsh BJ, Zolotukhin S, Muzyczka N, Mhatre AN. Green fluorescent protein as a reporter for gene transfer studies in the cochlea. Hear Res 1997; 114:139–147.CrossRefPubMedGoogle Scholar
  33. 33.
    Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY. A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 2002; 99:7877–7882.CrossRefPubMedGoogle Scholar
  34. 34.
    Mathieu S, El-Battari A. Monitoring E-selectin-mediated adhesion using green and red fluorescent proteins. J Immunol Methods 2003; 272:81–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 2002; 99:377–382.PubMedGoogle Scholar
  36. 36.
    Ray P, Bauer E, Iyer M, Barrio JR, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Monitoring gene therapy with reporter gene imaging. Semin Nucl Med 2001; 31:312–320.PubMedGoogle Scholar
  37. 37.
    Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41:1369–1379.PubMedGoogle Scholar
  38. 38.
    Jacobs A, Dubrovin M, Hewett J, Sena-Esteves M, Tan CW, Slack M, Sadelain M, Breakefield XO, Tjuvajev JG. Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1999; 1:154–161.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Y, Yu YA, Shabahang S, Wang G, Szalay AA. Renilla luciferase-Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals. Mol Genet Genomics 2002; 268:160–168.CrossRefPubMedGoogle Scholar
  40. 40.
    Ray P, Wu AM, Gambhir SS. Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 2003; 63:1160–1165.PubMedGoogle Scholar
  41. 41.
    Ponomarev V, Doubrovin M, Serganova I, Ageyeva L, Beresten T, Sagomonyan S, Balatoni J, Finn R, Blasberg R, Gelovani Tjuvajev, JG. A novel triple modality reporter gene for whole body fluorescent, bioluminescent and nuclear non-invasive imaging. ASGT 6th Annual Meeting, Washington DC, June 4–8 2003.Google Scholar
  42. 42.
    Gallardo HF, Tan C, Ory D, Sadelain M. Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 1997; 90:952–957.PubMedGoogle Scholar
  43. 43.
    Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, Blasberg R. “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab 1998; 18:500–509.CrossRefPubMedGoogle Scholar
  44. 44.
    Tjuvajev JG, Joshi A, Callegari J, Lindsley L, Joshi R, Balatoni J, Finn R, Larson SM, Sadelain M, Blasberg RG. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1999; 1:315–320.PubMedGoogle Scholar
  45. 45.
    Ivanova A, Ponomarev V, Dubrovin M, Ageyeva L, Serganova I, Vider E, Soghomonian S, Balatoni J, Finn R, Blasberg R, Gelovani Tjuvajev, J. A novel retroviral vector for transfection with multiple reporter genes for multi-modality imaging in vivo. Society of Molecular Imaging 1st Annual Meeting, Boston, MA, August 24–26, 2002.Google Scholar
  46. 46.
    Borman A, Le Mercier P, Girard M, Kean KM. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 1997; 25:925–932.CrossRefPubMedGoogle Scholar
  47. 47.
    Robbins P, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther 1998; 80:35–47.PubMedGoogle Scholar
  48. 48.
    Paquin A, Jaalouk DE, Galipeau J. Retrovector encoding a green fluorescent protein-herpes simplex virus thymidine kinase fusion protein serves as a versatile suicide/reporter for cell and gene therapy applications. Hum Gene Ther 2001; 12:13–23.CrossRefPubMedGoogle Scholar
  49. 49.
    Conti E, Franks NP, Brick P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 1996; 5:287–298.Google Scholar
  50. 50.
    Salomon B, Maury S, Loubiere L, Caruso M, Onclercq R, Klatzmann D. A truncated herpes simplex virus thymidine kinase phosphorylates thymidine and nucleoside analogs and does not cause sterility in transgenic mice. Mol Cell Biol 1995; 15:5322–5328.PubMedGoogle Scholar
  51. 51.
    Cohen JL, Boyer O, Salomon B, Onclerco R, Depetris D, Lejeune L, Dubus-Bonnet V, Bruel S, Charlotte F, Mattei MG, Klatzmann D. Fertile homozygous transgenic mice expressing a functional truncated herpes simplex thymidine kinase delta TK gene. Transgenic Res 1998; 7:321–330.CrossRefPubMedGoogle Scholar
  52. 52.
    Cowsill C, Southgate TD, Morrissey G, Dewey RA, Morelli AE, Maleniak TC, Forrest Z, Klatzmann D, Wilkinson GW, Lowenstein PR, Castro MG. Central nervous system toxicity of two adenoviral vectors encoding variants of the herpes simplex virus type 1 thymidine kinase: reduced cytotoxicity of a truncated HSV1-TK. Gene Ther 2000; 7:679–685.CrossRefPubMedGoogle Scholar
  53. 53.
    Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 1997; 407:313–319.PubMedGoogle Scholar
  54. 54.
    DiLella A, Hope DA, Chen H, Trumbauer M, Schwartz RJ, Smith RG. Utility of firefly luciferase as a reporter gene for promoter activity in transgenic mice. Nucleic Acids Res 1988; 16:4159.PubMedGoogle Scholar
  55. 55.
    Green L, Yap C, Nguyen N, Barrio J, Namavari M, Satyamurthy N, Phelps M, Sandgren E, Herschman H, Gambhir S. Indirect monitoring of endogenous gene expression by positron emission tomography (PET) imaging of reporter gene expression in transgenic mice. Mol Imaging Biol 2002; 4:71–81.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Vladimir Ponomarev
    • 1
  • Michael Doubrovin
    • 2
  • Inna Serganova
    • 2
  • Jelena Vider
    • 1
  • Aleksander Shavrin
    • 1
  • Tatiana Beresten
    • 2
  • Anna Ivanova
    • 2
  • Ludmila Ageyeva
    • 1
  • Vilia Tourkova
    • 1
  • Julius Balatoni
    • 3
  • William Bornmann
    • 4
  • Ronald Blasberg
    • 2
  • Juri Gelovani Tjuvajev
    • 1
    • 5
    Email author
  1. 1.Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of NeurologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Radiochemistry/Cyclotron Core FacilityMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.Organic Chemistry Synthesis Core FacilityMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.MD Anderson Cancer CenterHoustonUSA

Personalised recommendations