Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan

  • Hiroshi ItoEmail author
  • Iwao Kanno
  • Chietsugu Kato
  • Toshiaki Sasaki
  • Kenji Ishii
  • Yasuomi Ouchi
  • Akihiko Iida
  • Hidehiko Okazawa
  • Kohei Hayashida
  • Naohiro Tsuyuguchi
  • Kazunari Ishii
  • Yasuo Kuwabara
  • Michio Senda
Original Article


Measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) by positron emission tomography (PET) with oxygen-15 labelled carbon dioxide (C15O2) or 15O-labelled water (H2 15O), 15O-labelled carbon monoxide (C15O) and 15O-labelled oxygen (15O2) is useful for diagnosis and treatment planning in cases of cerebrovascular disease. The measured values theoretically depend on various factors, which may differ between PET centres. This study explored the applicability of a database of 15O-PET by examining between-centre and within-centre variation in values. Eleven PET centres participated in this multicentre study; seven used the steady-state inhalation method, one used build-up inhalation and three used bolus administration of C15O2 (or H2 15O) and 15O2. All used C15O for measurement of CBV. Subjects comprised 70 healthy volunteers (43 men and 27 women; mean age 51.8±15.1 years). Overall mean±SD values for cerebral cortical regions were: CBF=44.4±6.5 ml 100 ml−1 min−1; CBV=3.8±0.7 ml 100 ml−1; OEF=0.44±0.06; CMRO2=3.3±0.5 ml 100 ml−1 min−1. Significant between-centre variation was observed in CBV, OEF and CMRO2 by one-way analysis of variance. However, the overall inter-individual variation in CBF, CBV, OEF and CMRO2 was acceptably small. Building a database of normal cerebral haemodynamics obtained by the15O-PET methods may be practicable.


PET Cerebral blood flow Cerebral blood volume Oxygen extraction fraction Cerebral metabolic rate of oxygen 



This work was supported by Grant-in-Aid for Scientific Research (C) by the Japan Society for the Promotion of Science (No. 14570900 and No. 15591314). We thank the staff of the 11 participating institutions for their help. We also thank Ms. Yuko Miura of the Akita Research Institute of Brain and Blood Vessels for her help with the statistical analyses.


  1. 1.
    Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984; 1:310–314.PubMedGoogle Scholar
  2. 2.
    Powers WJ, Grubb RL, Raichle ME. Physiological responses to focal cerebral ischemia in humans. Ann Neurol 1984; 16:546–552.PubMedGoogle Scholar
  3. 3.
    Powers WJ, Grubb RL, Darriet D, Raichle ME. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 1985; 5:600–608.PubMedGoogle Scholar
  4. 4.
    Leblanc R, Yamamoto YL, Tyler JL, Diksic M, Hakim A. Borderzone ischemia. Ann Neurol 1987; 22:707–713.PubMedGoogle Scholar
  5. 5.
    Kanno I, Uemura K, Higano S, Murakami M, Iida H, Miura S, Shishido F, Inugami A, Sayama I. Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional CO2 responsiveness measured by positron emission tomography. J Cereb Blood Flow Metab 1988; 8:227–235.PubMedGoogle Scholar
  6. 6.
    Sette G, Baron JC, Mazoyer B, Levasseur M, Pappata S, Crouzel C. Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. Brain 1989; 112:931–951.PubMedGoogle Scholar
  7. 7.
    Yamauchi H, Fukuyama H, Kimura J, Konishi J, Kameyama M. Hemodynamics in internal carotid artery occlusion examined by positron emission tomography. Stroke 1990; 21:1400–1406.PubMedGoogle Scholar
  8. 8.
    Derdeyn CP, Grubb RL, Jr., Powers WJ. Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology 1999; 53:251–259.PubMedGoogle Scholar
  9. 9.
    Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Nakamura K, Yamamoto Y, Yonekura Y, Konishi J, Kimura J. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry 1996; 61:18–25.PubMedGoogle Scholar
  10. 10.
    Derdeyn CP, Yundt KD, Videen TO, Carpenter DA, Grubb RL, Powers WJ. Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke 1998; 29:754–758.PubMedGoogle Scholar
  11. 11.
    Grubb RL, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, Spitznagel EL, Powers WJ. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 1998; 280:1055–1060.CrossRefPubMedGoogle Scholar
  12. 12.
    Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Ueno M, Nishizawa S, Konishi J, Shio H. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med 1999; 40:1992–1998.PubMedGoogle Scholar
  13. 13.
    Yokota C, Hasegawa Y, Minematsu K, Yamaguchi T. Effect of acetazolamide reactivity on long-term outcome in patients with major cerebral artery occlusive diseases. Stroke 1998; 29:640–644.PubMedGoogle Scholar
  14. 14.
    Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with15O positron emission tomography. Stroke 1981; 12:454–459.PubMedGoogle Scholar
  15. 15.
    Powers WJ, Martin WR, Herscovitch P, Raichle ME, Grubb RL Jr. Extracranial-intracranial bypass surgery: hemodynamic and metabolic effects. Neurology 1984; 34:1168–1174.PubMedGoogle Scholar
  16. 16.
    Samson Y, Baron JC, Bousser MG, Rey A, Derlon JM, David P, Comoy J. Effects of extra-intracranial arterial bypass on cerebral blood flow and oxygen metabolism in humans. Stroke 1985; 16:609–616.PubMedGoogle Scholar
  17. 17.
    Kuwabara Y, Ichiya Y, Sasaki M, Yoshida T, Fukumura T, Masuda K, Fujii K, Fukui M. PET evaluation of cerebral hemodynamics in occlusive cerebrovascular disease pre- and postsurgery. J Nucl Med 1998; 39:760–765.PubMedGoogle Scholar
  18. 18.
    Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 1980; 4:727–736.PubMedGoogle Scholar
  19. 19.
    Senda M, Buxton RB, Alpert NM, Correia JA, Mackay BC, Weise SB, Ackerman RH. The15O steady-state method: correction for variation in arterial concentration. J Cereb Blood Flow Metab 1988; 8:681–690.PubMedGoogle Scholar
  20. 20.
    Sadato N, Yonekura Y, Senda M, Iwasaki Y, Matoba N, Tamaki N, Sasayama S, Magata Y, Konishi J. PET and the autoradiographic method with continuous inhalation of oxygen-15-gas: theoretical analysis and comparison with conventional steady-state methods. J Nucl Med 1993; 34:1672–1680.PubMedGoogle Scholar
  21. 21.
    Kanno I, Lammertsma AA, Heather JD, Gibbs JM, Rhodes CG, Clark JC, Jones T. Measurement of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: description of the method and its comparison with the C15O2 continuous inhalation method. J Cereb Blood Flow Metab 1984; 4:224–234.Google Scholar
  22. 22.
    Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983; 24:790–798.PubMedGoogle Scholar
  23. 23.
    Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, Inugami A, Shishido F, Uemura K. A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab 1987; 7:143–153.PubMedGoogle Scholar
  24. 24.
    Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 1984; 25:177–187.PubMedGoogle Scholar
  25. 25.
    Herscovitch P, Mintun MA, Raichle ME. Brain oxygen utilization measured with oxygen-15 radiotracers and positron emission tomography: generation of metabolic images. J Nucl Med 1985; 26:416–417.PubMedGoogle Scholar
  26. 26.
    Martin WR, Powers WJ, Raichle ME. Cerebral blood volume measured with inhaled C15O and positron emission tomography. J Cereb Blood Flow Metab 1987; 7:421–426.PubMedGoogle Scholar
  27. 27.
    Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab 1983; 3:416–424.PubMedGoogle Scholar
  28. 28.
    Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986; 6:536–545.PubMedGoogle Scholar
  29. 29.
    Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, Murakami M, Takahashi K, Sasaki H, Uemura K. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O] water and dynamic positron emission tomography. J Cereb Blood Flow Metab 1988; 8:285–288.PubMedGoogle Scholar
  30. 30.
    Iida H, Jones T, Miura S. Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J Nucl Med 1993; 34:1333–1340.PubMedGoogle Scholar
  31. 31.
    Lammertsma AA, Jones T, Frackowiak RS, Lenzi GL. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15. J Comput Assist Tomogr 1981; 5:544–550.PubMedGoogle Scholar
  32. 32.
    Ito H, Kanno I, Iida H, Hatazawa J, Shimosegawa E, Tamura H, Okudera T. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Ann Nucl Med 2001; 15:111–116.PubMedGoogle Scholar
  33. 33.
    Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab 1989; 9:874–885.PubMedGoogle Scholar
  34. 34.
    Shimosegawa E, Hatazawa J, Inugami A, Fujita H, Ogawa T, Aizawa Y, Kanno I, Okudera T, Uemura K. Cerebral infarction within six hours of onset: prediction of completed infarction with technetium-99m-HMPAO SPECT. J Nucl Med 1994; 35:1097–1103.PubMedGoogle Scholar
  35. 35.
    Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, Heiss WD. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994; 18:110–118.PubMedGoogle Scholar
  36. 36.
    Iida H, Miura S, Kanno I, Murakami M, Takahashi K, Uemura K, Hirose Y, Amano M, Yamamoto S, Tanaka K. Design and evaluation of HEADTOME-IV, a whole-body positron emission tomograph. IEEE Trans Nucl Sci 1989; 36:1006–1010.CrossRefGoogle Scholar
  37. 37.
    Iida H, Miura S, Kanno I, Ogawa T, Uemura K. A new PET camera for noninvasive quantitation of physiological functional parametric images: Headtome-V-dual. In: Myers R, Cunningham V, Bailey D, Jones T, eds. Quantification of brain function using PET. San Diego: Academic Press; 1996:57–61.Google Scholar
  38. 38.
    Yamashita T, Uchida H, Okada H, Kurono T, Takemori T, Watanabe M, Shimizu K, Yoshikawa E, Ohmura T, Satoh N, Tanaka E. Development of a high resolution PET. IEEE Trans Nucl Sci 1990; 37:594–599.CrossRefGoogle Scholar
  39. 39.
    DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994; 35:1398–1406.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Hiroshi Ito
    • 1
    • 2
    Email author
  • Iwao Kanno
    • 1
  • Chietsugu Kato
    • 3
  • Toshiaki Sasaki
    • 4
  • Kenji Ishii
    • 5
  • Yasuomi Ouchi
    • 6
  • Akihiko Iida
    • 7
  • Hidehiko Okazawa
    • 8
  • Kohei Hayashida
    • 9
  • Naohiro Tsuyuguchi
    • 10
  • Kazunari Ishii
    • 11
  • Yasuo Kuwabara
    • 12
  • Michio Senda
    • 13
  1. 1.Department of Radiology and Nuclear MedicineAkita Research Institute of Brain and Blood VesselsAkitaJapan
  2. 2.Department of Nuclear Medicine and Radiology, Division of Brain SciencesInstitute of Development, Aging and Cancer, Tohoku UniversityAoba-Ku, SendaiJapan
  3. 3.Department of Nuclear MedicineHokkaido University School of MedicineSapporoJapan
  4. 4.Cyclotoron Research CenterIwate Medical UniversityMoriokaJapan
  5. 5.Positron Medical CenterTokyo Metropolitan Institute of GerontologyTokyoJapan
  6. 6.Positron Medical CenterHamamatsu Medical CenterHamakitaJapan
  7. 7.Nagoya City Rehabilitation CenterNagoyaJapan
  8. 8.PET Unit, Research InstituteShiga Medical CenterMoriyamaJapan
  9. 9.Department of RadiologyNational Cardiovascular CenterSuita, OsakaJapan
  10. 10.Department of NeurosurgeryOsaka City University Medical SchoolOsakaJapan
  11. 11.Division of Imaging ResearchHyogo Institute for Aging Brain and Cognitive DisordersHimeji, HyogoJapan
  12. 12.Department of Radiology, Faculty of MedicineKyushu UniversityFukuokaJapan
  13. 13.Department of Image-based MedicineInstitute of Biomedical Research and InnovationKobeJapan

Personalised recommendations