The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

  • Ingeborg Goethals
  • Kurt Audenaert
  • Christophe Van de Wiele
  • Rudi Dierckx
Occasional Survey

Abstract

This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions.

Keywords

Prefrontal cortex Functional neuroimaging Cognitive activation 

References

  1. 1.
    Fuster J. Animal neuropsychology. In: The prefrontal cortex. New York: Lippincott-Raven; 1997:66–101.Google Scholar
  2. 2.
    Fuster J. Human neuropsychology. In: The prefrontal cortex. New York: Lippincott-Raven; 1997:150–184.Google Scholar
  3. 3.
    Burgess PW, Shallice T. Bizarre responses, rule detection and frontal lobe lesions. Cortex 1996; 32:241–259.PubMedGoogle Scholar
  4. 4.
    Burgess PW, Shallice T. Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 1996; 34:263–272.PubMedGoogle Scholar
  5. 5.
    Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW. Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 1990; 28:1021–1034.PubMedGoogle Scholar
  6. 6.
    Alexander MP, Stuss DT. Disorders of frontal lobe functioning. Semin Neurol 2000; 20:427–437.CrossRefPubMedGoogle Scholar
  7. 7.
    Collette F, Van der Linden M. Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 2002; 26:105–125.CrossRefPubMedGoogle Scholar
  8. 8.
    Fuster J. Neuroimaging. In: The prefrontal cortex. New York: Lippincott-Raven; 1997:185–208.Google Scholar
  9. 9.
    Fletcher PC, Henson RN. Frontal lobes and human memory: insights from functional neuroimaging. Brain 2001; 124:849–881.CrossRefPubMedGoogle Scholar
  10. 10.
    Van Buren J, Borke R. Variations and connections of the human thalamus. Berlin Heidelberg New York: Springer, 1972.Google Scholar
  11. 11.
    Passingham R. The frontal lobes and voluntary action. Oxford: Oxford University Press, 1993.Google Scholar
  12. 12.
    Miller EK. The prefrontal cortex: No simple matter. Neuroimage 2000; 11:447–450.CrossRefPubMedGoogle Scholar
  13. 13.
    Fuster J. Anatomy of the prefrontal cortex. In: The prefrontal cortex. New York: Lippincott-Raven; 1997:6–42.Google Scholar
  14. 14.
    Baddeley A. Working memory. Science 1992; 255:556–559.Google Scholar
  15. 15.
    Weinberger DR. A connectionist approach to the prefrontal cortex. J Neuropsychiatry Clin Neurosci 1993; 5:241–253.PubMedGoogle Scholar
  16. 16.
    Fuster JM. Frontal lobes. Curr Opin Neurobiol 1993; 3:160–165.PubMedGoogle Scholar
  17. 17.
    Baddeley A. Working memory. Oxford: Clarendon Press, 1986.Google Scholar
  18. 18.
    Baddeley A. Exploring the central executive. Q J Exp Psychol 1996; 49A:5–28.CrossRefGoogle Scholar
  19. 19.
    Duncan J, Johnson R, Swales M, Freer C. Frontal lobe deficits after head injury: unity and diversity of function. Cogn Neuropsychol 1997; 14:713–741.CrossRefGoogle Scholar
  20. 20.
    Robbins TW, James M, Owen AM, Sahakian BJ, Lawrence AD, McInnes L, Rabbitt PM. A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. J Int Neuropsychol Soc 1998; 4:474–490.PubMedGoogle Scholar
  21. 21.
    Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognit Psychol 2000; 41:49–100.CrossRefPubMedGoogle Scholar
  22. 22.
    Awh E, Jonides J, Smith E, Schumacher E, Koeppe R, Katz S. Dissociation of storage and rehearsal in verbal working memory: evidence from PET. Psychol Sci 1996; 7:25–31.Google Scholar
  23. 23.
    Smith E, Jonides J. Spatial versus object working memory: PET investigations. J Cognit Neurosci 1995; 7:337–356.Google Scholar
  24. 24.
    Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature 1993; 362:342–345.PubMedGoogle Scholar
  25. 25.
    Smith EE, Jonides J. Working memory: a view from neuroimaging. Cognit Psychol 1997; 33:5–42.PubMedGoogle Scholar
  26. 26.
    Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA. Spatial working memory in humans as revealed by PET. Nature 1993; 363:623–625.PubMedGoogle Scholar
  27. 27.
    Smith EE, Jonides J, Koeppe RA. Dissociating verbal and spatial working memory using PET. Cereb Cortex 1996; 6:11–20.PubMedGoogle Scholar
  28. 28.
    Smith EE, Jonides J. Neuroimaging analyses of human working memory. Proc Natl Acad Sci U S A 1998; 95:12061–12068.CrossRefPubMedGoogle Scholar
  29. 29.
    Baker SC, Frith CD, Frackowiak RS, Dolan RJ. Active representation of shape and spatial location in man. Cereb Cortex 1996; 6:612–619.PubMedGoogle Scholar
  30. 30.
    Belger A, Puce A, Krystal JH, Gore JC, Goldman-Rakic P, McCarthy G. Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Hum Brain Mapp 1998; 6:14–32.CrossRefPubMedGoogle Scholar
  31. 31.
    McCarthy G, Puce A, Constable RT, Krystal JH, Gore JC, Goldman-Rakic P. Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb Cortex 1996; 6:600–611.PubMedGoogle Scholar
  32. 32.
    Petrides M, Alivisatos B, Meyer E, Evans AC. Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci U S A 1993; 90:878–882.PubMedGoogle Scholar
  33. 33.
    Petrides M, Alivisatos B, Evans AC, Meyer E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci U S A 1993; 90:873–877.PubMedGoogle Scholar
  34. 34.
    Collette F, Salmon E, Van der LM, Chicherio C, Belleville S, Degueldre C, Delfiore G, Franck G. Regional brain activity during tasks devoted to the central executive of working memory. Brain Res Cogn Brain Res 1999; 7:411–417.Google Scholar
  35. 35.
    Postle BR, Berger JS, D’Esposito M. Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proc Natl Acad Sci U S A 1999; 96:12959–12964.CrossRefPubMedGoogle Scholar
  36. 36.
    Schumacher E, Lauber EJ, Awh E, Jonides J, Smith E, Koeppe R. PET evidence for an amodal verbal working memory system. Neuroimage 1996; 3:79–88.PubMedGoogle Scholar
  37. 37.
    Shimamura A. The role of the prefrontal cortex in dynamic filtering. Psychobiology 2000; 28:207–218.Google Scholar
  38. 38.
    Smith EE, Jonides J. Neuroimaging analyses of human working memory. Proc Natl Acad Sci U S A 1998; 95:12061–12068.CrossRefPubMedGoogle Scholar
  39. 39.
    Smith EE, Jonides J. Working memory: a view from neuroimaging. Cognit Psychol 1997; 33:5–42.PubMedGoogle Scholar
  40. 40.
    Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997; 5:49–62.PubMedGoogle Scholar
  41. 41.
    Owen AM, Stern CE, Look RB, Tracey I, Rosen BR, Petrides M. Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc Natl Acad Sci U S A 1998; 95:7721–7726.PubMedGoogle Scholar
  42. 42.
    Cohen JD, Forman SD, Braver TS, Casey B, Servan-Schreiber D, Noll DC. Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp 1994; 1:293–304.Google Scholar
  43. 43.
    Mellers JD, Bullmore E, Brammer M, Williams SC, Andrew C, Sachs N, Andrews C, Cox TS, Simmons A, Woodruff P. Neural correlates of working memory in a visual letter monitoring task: an fMRI study. Neuroreport 1995; 7:109–112.PubMedGoogle Scholar
  44. 44.
    Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE. Temporal dynamics of brain activation during a working memory task. Nature 1997; 386:604–608.PubMedGoogle Scholar
  45. 45.
    Salmon E, Van der Linden M, Collette F, Delfiore G, Maquet P, Degueldre C, Luxen A, Franck G. Regional brain activity during working memory tasks. Brain 1996; 119:1617–1625.PubMedGoogle Scholar
  46. 46.
    Van der Linden M, Collette F, Salmon E, Delfiore G, Degueldre C, Luxen A, Franck G. The neural correlates of updating information in verbal working memory. Memory 1999; 7:549–560.PubMedGoogle Scholar
  47. 47.
    Dempster FN. Inhibitory processes: a neglected dimension of intelligence. Intelligence 1991; 15:157–173.CrossRefGoogle Scholar
  48. 48.
    D’Esposito M, Postle BR, Jonides J, Smith EE. The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proc Natl Acad Sci U S A 1999; 96:7514–7519.CrossRefPubMedGoogle Scholar
  49. 49.
    Nathaniel-James DA, Fletcher P, Frith CD. The functional anatomy of verbal initiation and suppression using the Hayling Test. Neuropsychologia 1997; 35:559–566.CrossRefPubMedGoogle Scholar
  50. 50.
    Collette F, Van der Linden M, Delfiore G, Degueldre C, Luxen A, Salmon E. The functional anatomy of inhibition processes investigated with the Hayling task. Neuroimage 2001; 14:258–267.CrossRefPubMedGoogle Scholar
  51. 51.
    Chee MWL, Sriram N, Soon CS, Lee KM. Dorsolateral prefrontal cortex and the implicit association of concepts and attributes. Neuroreport 2000; 11:135–140.PubMedGoogle Scholar
  52. 52.
    Jonides J, Smith EE, Marshuetz C, Koeppe RA, Reuter-Lorenz PA. Inhibition in verbal working memory revealed by brain activation. Proc Natl Acad Sci U S A 1998; 95:8410–8413.CrossRefPubMedGoogle Scholar
  53. 53.
    Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 1997; 94:14792–14797.CrossRefPubMedGoogle Scholar
  54. 54.
    Jahanshahi M, Dirnberger G, Fuller R, Frith CD. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage 2000; 12:713–725.CrossRefPubMedGoogle Scholar
  55. 55.
    Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 1999; 122:981–991.CrossRefPubMedGoogle Scholar
  56. 56.
    Garavan H, Ross TJ, Stein EA. Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci U S A 1999; 96:8301–8306.PubMedGoogle Scholar
  57. 57.
    Hazeltine E, Poldrack R, Gabrieli JD. Neural activation during response competition. J Cogn Neurosci 2000; 12 Suppl 2:118–129.Google Scholar
  58. 58.
    MacDonald AW, III, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000; 288:1835–1838.CrossRefPubMedGoogle Scholar
  59. 59.
    Taylor SF, Kornblum S, Minoshima S, Oliver LM, Koeppe RA. Changes in medial cortical blood flow with a stimulus-response compatibility task. Neuropsychologia 1994; 32:249–255.PubMedGoogle Scholar
  60. 60.
    MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull 1991; 109:163–203.PubMedGoogle Scholar
  61. 61.
    Stroop J. Studies of interference in serial verbal reactions. J Exp Psychol 1935; 18:643–662.Google Scholar
  62. 62.
    Pardo JV, Pardo PJ, Janer KW, Raichle ME. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci U S A 1990; 87:256–259.PubMedGoogle Scholar
  63. 63.
    Bench CJ, Frith CD, Grasby PM, Friston KJ, Paulesu E, Frackowiak RS, Dolan RJ. Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 1993; 31:907–922.CrossRefPubMedGoogle Scholar
  64. 64.
    Carter CS, Mintun M, Cohen JD. Interference and facilitation effects during selective attention: an H2 15O PET study of Stroop task performance. Neuroimage 1995; 2:264–272.PubMedGoogle Scholar
  65. 65.
    George MS, Ketter TA, Parekh PI, Rosinsky N, Ring HA, Casey B, Trimble M, Horwitz B, Herscovitch P, Post RM. Regional brain activity when selecting a response despite interference: an H2[15]0 PET study of the Stroop and an emotional Stroop. Hum Brain Mapp 1994; 1:194–209.Google Scholar
  66. 66.
    Peterson BS, Skudlarski P, Gatenby JC, Zhang H, Anderson AW, Gore JC. An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry 1999; 45:1237–1258.PubMedGoogle Scholar
  67. 67.
    Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC. An event-related functional MRI study of the Stroop color word interference task. Cereb Cortex 2000; 10:552–560.PubMedGoogle Scholar
  68. 68.
    Taylor SF, Kornblum S, Lauber EJ, Minoshima S, Koeppe RA. Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage 1997; 6:81–92.CrossRefPubMedGoogle Scholar
  69. 69.
    Monchi O, Petrides M, Petre V, Worsley K, Dagher A. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event- related functional magnetic resonance imaging. J Neurosci 2001; 21:7733–7741.PubMedGoogle Scholar
  70. 70.
    Berman KF, Ostrem JL, Randolph C, Gold J, Goldberg TE, Coppola R, Carson RE, Herscovitch P, Weinberger DR. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study. Neuropsychologia 1995; 33:1027–1046.CrossRefPubMedGoogle Scholar
  71. 71.
    Nagahama Y, Fukuyama H, Yamauchi H, Matsuzaki S, Konishi J, Shibasaki H, Kimura J. Cerebral activation during performance of a card sorting test. Brain 1996; 119:1667–1675.PubMedGoogle Scholar
  72. 72.
    Goldberg TE, Berman KF, Fleming K, Ostrem J, Van Horn JD, Esposito G, Mattay VS, Gold JM, Weinberger DR. Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study. Neuroimage 1998; 7:296–303.Google Scholar
  73. 73.
    Konishi S, Nakajima K, Uchida I, Kameyama M, Nakahara K, Sekihara K, Miyashita Y. Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci 1998; 1:80–84.CrossRefPubMedGoogle Scholar
  74. 74.
    Konishi S, Kawazu M, Uchida I, Kikyo H, Asakura I, Miyashita Y. Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cereb Cortex 1999; 9:745–753.CrossRefPubMedGoogle Scholar
  75. 75.
    Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Oyanagi C, Konishi J, Fukuyama H, Shibasaki H. Dissociable mechanisms of attentional control within the human prefrontal cortex. Cereb Cortex 2001; 11:85–92.CrossRefPubMedGoogle Scholar
  76. 76.
    Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW. Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci 2000; 12:142–162.PubMedGoogle Scholar
  77. 77.
    D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M. The neural basis of the central executive system of working memory. Nature 1995; 378:279–281.PubMedGoogle Scholar
  78. 78.
    Adcock RA, Constable RT, Gore JC, Goldman-Rakic PS. Functional neuroanatomy of executive processes involved in dual-task performance. Proc Natl Acad Sci U S A 2000; 97:3567–3572.CrossRefPubMedGoogle Scholar
  79. 79.
    Klingberg T. Concurrent performance of two working memory tasks: potential mechanisms of interference. Cereb Cortex 1998; 8:593–601.CrossRefPubMedGoogle Scholar
  80. 80.
    Bunge SA, Klingberg T, Jacobsen RB, Gabrieli JD. A resource model of the neural basis of executive working memory. Proc Natl Acad Sci U S A 2000; 97:3573–3578.CrossRefPubMedGoogle Scholar
  81. 81.
    Smith EE, Geva A, Jonides J, Miller A, Reuter-Lorenz P, Koeppe RA. The neural basis of task-switching in working memory: effects of performance and aging. Proc Natl Acad Sci U S A 2001; 98:2095–2100.CrossRefPubMedGoogle Scholar
  82. 82.
    Friston K, Price C, Fletcher PC, Moore C, Frackowiak RS, Dolan RJ. The trouble with cognitive subtraction. Neuroimage 1997; 4:97–104.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ingeborg Goethals
    • 1
  • Kurt Audenaert
    • 2
  • Christophe Van de Wiele
    • 1
  • Rudi Dierckx
    • 1
  1. 1.Division of Nuclear Medicine, Polikliniek 7Ghent University HospitalGhentBelgium
  2. 2.Department of Psychiatry and Medical PsychologyGhent University HospitalGhentBelgium

Personalised recommendations