Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

  • Philipp T. MeyerEmail author
  • Laszlo Sturz
  • Mathias Schreckenberger
  • Uwe Spetzger
  • Georg F. Meyer
  • Keyvan S. Setani
  • Osama Sabri
  • Udalrich Buell
Original Article


In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with proposed reorganisation processes, but they may also reflect an unspecific recruitment of the right-sided Broca's homologue in the effort to perform the task.


Preoperative brain mapping Positron emission tomography Brain tumour Cortical reorganisation 



The authors would like to thank the team of the Cyclotron/PET facility of the Department of Nuclear Medicine of the Hospital of the University of Technology, Aachen.


  1. 1.
    Papathanassiou D, Etard O, Mellet E, Zago L, Mazoyer B, Tzourio-Mazoyer N. A common language network for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage 2000; 11:347–357.CrossRefPubMedGoogle Scholar
  2. 2.
    Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 1989; 71:316–326.PubMedGoogle Scholar
  3. 3.
    Xiong J, Rao S, Jerabek P, Zamarripa F, Woldorff M, Lancaster J, Fox PT. Intersubject variability in cortical activations during a complex language task. Neuroimage 2000; 12:326–339.CrossRefPubMedGoogle Scholar
  4. 4.
    Leblanc R, Meyer E, Zatorre R, Tampieri D, Evans A. Functional PET scanning in the preoperative assessment of cerebral arteriovenous malformations. Stereotact Funct Neurosurg 1995; 65:60–64.PubMedGoogle Scholar
  5. 5.
    Kaplan AM, Bandy DJ, Manwaring KH, Chen K, Lawson MA, Moss SD, Duncan JD, Wodrich DL, Schnur JA, Reiman EM. Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 1999; 91:797–803.PubMedGoogle Scholar
  6. 6.
    Müller RA, Rathermel RD, Behen ME, Muzik O, Chakraborty PK, Chugani HAT. Language organization in patients with early and late left-hemisphere lesions: a PET study. Neuropsychologia 1999; 37:545–557.CrossRefPubMedGoogle Scholar
  7. 7.
    Duncan JD, Moss SD, Bandy DJ, Manwaring K, Kaplan AM, Reiman EM, Chen K, Lawson MA, Wodrich DL. Use of positron emission tomography for presurgical localization of eloquent brain areas in children with seizures. Pediatr Neurosurg 1997; 26:144–145.PubMedGoogle Scholar
  8. 8.
    Thiel A, Herholz K, Koyuncu A, Ghaemi M, Kracht LW, Habedank B, Heiss WD. Plasticity of language networks in patients with brain tumors: a positron emission tomography activation study. Ann Neurol 2001; 50:620–629.PubMedGoogle Scholar
  9. 9.
    Schlosser MJ, Luby M, Spencer DD, Awad IA, McCarthy G. Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg 1999; 91:626–635.PubMedGoogle Scholar
  10. 10.
    Leblanc R, Meyer E, Bub D, Zatorre RJ, Evans AC. Language localization with activation positron emission tomography scanning. Neurosurgery 1992; 31:369–373.PubMedGoogle Scholar
  11. 11.
    Bookheimer SY, Zeffiro TA, Blaxton T, Malow BA, Gaillard WD, Sato S, Kufta C, Fedio P, Theodore WH. A direct comparison of PET activation and electrocortical stimulation mapping for language localization. Neurology 1997; 48:1056–1065.PubMedGoogle Scholar
  12. 12.
    Herholz K, Reulen HJ, von Stockhausen HM, Thiel A, Ilmberger J, Kessler J, Eisner W, Yousry TA, Heiss WD. Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 1997; 41:1253–1260; discussion 1260–1262.PubMedGoogle Scholar
  13. 13.
    Nariai T, Senda M, Ishii K, Maehara T, Wakabayashi S, Toyama H, Ishiwata K, Hirakawa K. Three-dimensional imaging of cortical structure, function and glioma for tumor resection. J Nucl Med 1997; 38:1563–1568.Google Scholar
  14. 14.
    Meyer PT, Sturz L, Sabri O, Schreckenberger M, Spetzger U, Setani KS, Kaiser HJ, Buell U. Preoperative motor system brain mapping using positron emission tomography and statistical parametric mapping: hints on cortical reorganization. J Neurol Neurosurg Psychiatry 2003; 74:471–478.CrossRefPubMedGoogle Scholar
  15. 15.
    Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2:189–210.Google Scholar
  16. 16.
    Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RS. Spatial registration and normalization of images. Hum Brain Mapp 1995; 3:165–189.Google Scholar
  17. 17.
    Pietrzyk U, Herholz K, Fink G, Jacobs A, Mielke R, Slansky I, Wurker M, Heiss WD. An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 1994; 35:2011–2018.PubMedGoogle Scholar
  18. 18.
    Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 1992; 12:900–918.PubMedGoogle Scholar
  19. 19.
    Fox PT, Mintun MA, Reiman EM, Raichle ME. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab 1988; 8:642–653.PubMedGoogle Scholar
  20. 20.
    Grabowski TJ, Frank RJ, Brown CK, Damasio H, Boles Ponto LL, Watkins GL, Hichwa RD. Reliability of PET activation across statistical methods, subject groups and sample size. Hum Brain Mapp 1996; 4:23–46.CrossRefGoogle Scholar
  21. 21.
    Chmielowska J, Coghill RC, Maisog JM, Carson RE, Herscovitch P, Honda M, Chen R, Hallett M. Positron emission tomography [15O]water studies with short interscan interval for single-subject and group analysis: influence of background subtraction. J Cereb Blood Flow Metab 1998; 18:433–443.PubMedGoogle Scholar
  22. 22.
    Andersson JL. Within-study repeated measurements to increase sensitivity for positron emission tomography activation studies. J Cereb Blood Flow Metab 1998; 18:319–331.PubMedGoogle Scholar
  23. 23.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 1998; 331:585–589.Google Scholar
  24. 24.
    Scott SK, Blank CC, Rosen S, Wise RJ. Identification of a pathway for intelligible speech in left temporal lobe. Brain 200; 123:2400–2406; comment: 2371–2372.Google Scholar
  25. 25.
    Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature 2000; 403:309–312.CrossRefPubMedGoogle Scholar
  26. 26.
    Martin A, Haxby JV, Lalonde FM, Wiggs FM, Ungerleider LG. Discrete cortical regions associated with the knowledge of color and knowledge of action. Science 1995; 270:102–105.PubMedGoogle Scholar
  27. 27.
    Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS. Functional anatomy of a common semantic system for words and pictures. Nature 1996; 383:254–256; comment: 216–217.Google Scholar
  28. 28.
    Warburton E, Wise RJ, Price CJ, Weiller C, Hadar U, Ramsay S, Frackowiak RS. Noun and verb retrieval by normal subjects. Studies with PET. Brain 1996; 119:159–179.PubMedGoogle Scholar
  29. 29.
    Murphy K, Corfield DR, Guz A, Fink GR, Wise RJ, Harrison J, Adams L. Cerebral areas associated with motor control of speech in humans. J Appl Physiol 1997; 83:1438–1447.Google Scholar
  30. 30.
    Wise RJ, Greene J, Buchel C, Scott SK. Brain regions involved in articulation. Lancet 1999; 353:1057–1061; comment: 1031–1032.Google Scholar
  31. 31.
    Poldrack RA, Wagner AD, Prull MW, Desmond JE, Glover GH, Gabriel JD. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 1999; 10:15–35.PubMedGoogle Scholar
  32. 32.
    Wiggs CL, Weisberg J, Martin A. Neural correlates of semantic and episodic memory retrieval. Neuropsychologia 1999; 37:103–118.CrossRefPubMedGoogle Scholar
  33. 33.
    Thompson-Schill SL, D'Esposito M, Aguirre GK, Farah MJ. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 1997; 94:14792–14797.CrossRefPubMedGoogle Scholar
  34. 34.
    Just MA, Carpenter A, Keller TA, Eddy WF, Thulborn KR. Brain activation modulated by sentence comprehension. Science 1996; 274:114–116; comment: 912–913.Google Scholar
  35. 35.
    Warburton E, Price CJ, Swinburn K, Wise RJS. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry 1999; 66:155–161.PubMedGoogle Scholar
  36. 36.
    Ohyama M, Senda M, Kitamura S, Ishii K, Mishina M, Terashi A. Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A PET activation study. Stroke 1996; 27:897–903.PubMedGoogle Scholar
  37. 37.
    Heiss WD, Karbe H, Weber-Luxemburger G, Herholz K, Kessler J, Pietrzyk U, Pawlik G. Speech-induced cerebral metabolic activation reflects recovery from aphasia. J Neurol Sci 1997; 145:213–217.PubMedGoogle Scholar
  38. 38.
    Karbe H, Thiel A, Weber-Luxemburger G, Herholz K, Kessler J, Heiss WD. Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere? Brain Lang 1998; 64:215–230.PubMedGoogle Scholar
  39. 39.
    Heiss WD, Kessler J, Thiel A, Ghaemi M, Karbe H. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 1999; 45:430–438, comment: 419–420.Google Scholar
  40. 40.
    Rosen HJ, Petersen SE, Linenweber MR, Snyder AZ, White DA, Chapman L, Dromerick AW, Fiez JA, Corbetta MD. Neural correlates of recovery from aphasia after damage to the left inferior frontal cortex. Neurology 2000; 55:1883–1894.PubMedGoogle Scholar
  41. 41.
    Belin P, van Eeckhout P, Zilbovicius M, Remy P, Francois C, Guillaume S, Chain F, Rancurel G, Samson Y. Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology 1996; 47:1504–1511.PubMedGoogle Scholar
  42. 42.
    Weiller C, Isensee C, Rijntjes M, Huber W, Müller S, Bier D, Dutschka K, Woods RP, Noth J, Dieter HC. Recovery from Wernicke's aphasia: a positron emission tomography study. Ann Neurol 1995; 37:723–732.PubMedGoogle Scholar
  43. 43.
    Musso M, Weiller C, Kiebel S, Müller SP, Bulau P, Rijntjes M. Training-induced brain plasticity in aphasia. Brain 1999; 122:1781–1790.PubMedGoogle Scholar
  44. 44.
    Thulborn KR, Carpenter PA, Just MA. Plasticity of language-related brain function during recovery from stroke. Stroke 1999; 30:749–754.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Philipp T. Meyer
    • 1
    • 3
    • 5
    Email author
  • Laszlo Sturz
    • 1
  • Mathias Schreckenberger
    • 1
  • Uwe Spetzger
    • 2
  • Georg F. Meyer
    • 4
  • Keyvan S. Setani
    • 1
  • Osama Sabri
    • 1
    • 3
  • Udalrich Buell
    • 1
  1. 1.Department of Nuclear MedicineAachen University of TechnologyAachenGermany
  2. 2.Department of NeurosurgeryAachen University of TechnologyAachenGermany
  3. 3.Department of Nuclear MedicineUniversity of LeipzigLeipzigGermany
  4. 4.MacKay Institute of Communication and NeuroscienceKeele UniversityUK
  5. 5.Institute of MedicineResearch Centre JülichJülichGermany

Personalised recommendations