Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 99, Issue 2, pp 185–195 | Cite as

Dynamics of stochastically induced and spatially inhomogeneous impurity breakdown in semiconductors

  • R. E. Kunz
  • E. Schöll
Original Contributions

Abstract

Impact ionization of trapped carriers in high electric fields at Helium temperatures can lead to threshold switching, i.e., switching of a semiconductor sample from a nearly insulating state to a high conducting steady state due to an applied voltage that exceeds the threshold value for breakdown. This phenomenon is investigated theoretically based on a set of partial differential equations containing the relevant carrier transport mechanisms. In a first analysis the impact of fluctuations on the breakdown process within the framework of a master equation description of spatially homogeneous generation-recombination kinetics is computed. Then, taking into account spatially inhomogeneous longitudinal modes, we find that threshold switching constitutes a three-stage process, consisting of a stage of front creation and propagation, a stage dominated by a seesawlike mode, and one in which impact ionization occurs nearly homogeneously throughout the sample.

PACS

72.20.Ht 05.40.+j 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schöll, E.: Nonequilibrium Phase Transitions in Semiconductors. Berlin: Springer 1987CrossRefGoogle Scholar
  2. 2.
    Schöll, E.: Nonlinear Dynamics, Phase Transitions and Chaos in Semiconductors, in: Handbook on Semiconductors. Landsberg, P.T. (ed.) vol. 1, 2nd edn. Amsterdam: North Holland 1992Google Scholar
  3. 3.
    Schöll, E., Wacker, A.: Oscillatory Transport Instabilities and Complex Spatio-Temporal Dynamics in Semiconductors, in: Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, Niedernostheide, F.J., (ed.). pp. 21–45. Berlin: Springer 1995.CrossRefGoogle Scholar
  4. 4.
    Schöll, E.: Z. Phys. B48, 153 (1982)CrossRefGoogle Scholar
  5. 5.
    Schöll, E., Drasdo, D.: Z. Phys.81, 183 (1990)CrossRefGoogle Scholar
  6. 6.
    Kunz, R.E., Schöll, E.: Z. Phys. B89, 289 (1992)CrossRefGoogle Scholar
  7. 7.
    Hüpper, G., Pyragas, K., Schöll, E.: Phys. Rev. B47, 15515 (1993)CrossRefGoogle Scholar
  8. 8.
    Hüpper, G., Pyragas, K., Schöll, E.: Phys. Rev. B48, 17633 (1993)CrossRefGoogle Scholar
  9. 9.
    Wacker, A., Schöll, E.: Z. Phys. B93, 431 (1994)CrossRefGoogle Scholar
  10. 10.
    Mayer, K.M., Gross, R., Parisi, J., Peinke, J., Huebener, R.P.: Solid State Commun.63, 55 (1987)CrossRefGoogle Scholar
  11. 11.
    Brandl, A., Völcker, M., Prettl W.: Appl. Phys. Lett.55, 238 (1989)CrossRefGoogle Scholar
  12. 12.
    Brandl, A., Völcker, M., Prettl, W.: Solid State Commun.72, 847 (1989)CrossRefGoogle Scholar
  13. 13.
    Clauss, W., Rau, U., Peinke, J., Parisi, J., Kittel, A., Bayerbach, M., Huebener, R.P.: J. Appl. Phys.70, 232 (1991)CrossRefGoogle Scholar
  14. 14.
    Niedernostheide, F.J., Kerner, B.S., Purwins, H.-G.: Phys. Rev. B46, 7559 (1992)CrossRefGoogle Scholar
  15. 15.
    Spangler, J., Margull, U., Prettl, W.: Phys. Rev. B45, 12137 (1992)CrossRefGoogle Scholar
  16. 16.
    Peinke, J., Parisi, J., Rössler, O.E., Stoop, R.: Encounter with Chaos. Berlin, Heidelberg: Springer 1992CrossRefGoogle Scholar
  17. 17.
    Clauss, W., Kittel, A., Rau, U., Parisi, J., Peinke, J. P., Huebener, R.: Europhys. Lett.12, 423 (1990)CrossRefGoogle Scholar
  18. 18.
    Peinke, J., Clauss, W., Huebener, R.P., Kittel, A., Parisi, J., Rau, U., Richter, R.: Spatio-Temporal Correlations in Semiconductors, in: Spontaneous Formation of Space-Time Structures and Criticality, Riste, T., Sherrington, D (eds.) Dordrecht: Kluwer 1991Google Scholar
  19. 19.
    Mayer, K.M., Parisi, J., Peinke, J., Huebener, R.P.: Physica D32 306 (1988)CrossRefGoogle Scholar
  20. 20.
    Mayer, K.M., Parisi, J., Huebener, R.P.: Z. Phys. B71, 171 (1988)CrossRefGoogle Scholar
  21. 21.
    F.-J. Niedernostheide M. Arps, R. Dohmen, Willebrand, H., Purwins, H.-G.: Phys. Status Solidi (b)172, 249 (1992)CrossRefGoogle Scholar
  22. 22.
    Sze, S.M.: Physics of Semiconductor Devices. New York: Wiley 1981.Google Scholar
  23. 23.
    Quade, W., Hüpper, G., Schöll, E., Kuhn, T.: Phys. Rev. B49, 13408 (1994)CrossRefGoogle Scholar
  24. 24.
    Lax, M.: Phys. Rev.119, 1502 (1960)CrossRefGoogle Scholar
  25. 25.
    Abakumov, V.N., Perel, V.I., Yassievich, I.N.: Sov. Phys. Semicond.12, 1 (1978).Google Scholar
  26. 26.
    Reggiani, L., Mitin, V.V.: Rev. Nuovo Cimento12, (11) 1 (1989)CrossRefGoogle Scholar
  27. 27.
    Caroli, B., Caroli, C., Roulet, B.: Physica A101, 581 (1980)CrossRefGoogle Scholar
  28. 28.
    Malchow, H. and Schimansky-Geier, L.: Noise and Diffusion in Bistable Nonequilibrium Systems. Berlin (Ost): Teubner, B.G. 1985Google Scholar
  29. 29.
    Schimansky-Geier, L., Zülicke, Ch.: Z. Phys. B79, 451 (1990)CrossRefGoogle Scholar
  30. 30.
    Van Vliet, K.M., Fassett, J.R.: Fluctuations due to electronic transitions and transport in solids, in: Fluctuation Phenomena in Solids. Burgess, R.E. (ed.) New York, London: Academic Press 1965Google Scholar
  31. 31.
    Keizer, J.: Statistical Thermodynamics of Nonequilibrium Processes. New York: Springer 1987CrossRefGoogle Scholar
  32. 32.
    Clauss, W.: Raum-Zeit-Dynamik des Stossionisationsdurchbruchs in p-Germanium, Ph.D. thesis, Eberhard-Karls-Universität Tübingen, 1990Google Scholar
  33. 33.
    Nicolis, G., Baras, F., Malek Mansour, M.: Fluctuations in Combustion, in Chemical Instabilities. Nicolis, G., Baras, F. (eds.) Dordrecht: Reidel 1984Google Scholar
  34. 34.
    Kittel, A., Rau, U., Richter, R., Huebener, R.P, Peinke, J., Parisi, J.: Z. Naturforsch.48a, 639 (1993)Google Scholar
  35. 35.
    Gillespie, D.T.: J. Comput. Phys.22, 403 (1976)CrossRefGoogle Scholar
  36. 36.
    Hänggi, P., Talkner, P., Borkovec, M.: Rev. Mod. Phys.62, 251 (1990)CrossRefGoogle Scholar
  37. 37.
    Sibani, P., Schön, J.C., Salamon, P., Andersson, J.-O.: Europhys. Lett.22, 479 (1993)CrossRefGoogle Scholar
  38. 38.
    Zülicke, Ch., Schimansky-Geier, L., Schöll, E.: (Unpublished results 1991)Google Scholar
  39. 39.
    Lampert, M.A., Mark, P.: Current Injection in Solids. New York: Academic Press 1970.Google Scholar
  40. 40.
    Gajewski, H., Heinemann, B., Nürnberg, R., Langmach, H., Telschow, G., Zarachias, K.: Manual of the Two-dimensional Semi-Conductor Analysis Package (ToSCA) (unpublished 1991)Google Scholar
  41. 41.
    Kunz, R.E., Schöll, E., Nürnberg, R., Gajewski, H.: (1995), (in preparation)Google Scholar
  42. 42.
    Markovich, P.A.: The Stationary Semiconductor Device Equations. Wien: Springer 1986CrossRefGoogle Scholar
  43. 43.
    Tyson, J.J., Keener, J.P.: Physica D32, 327 (1988)CrossRefGoogle Scholar
  44. 44.
    Döttling, R., Schöll, E.: Physica D67, 418 (1993)CrossRefGoogle Scholar
  45. 45.
    Döttling, R., Schöll, E.: Solid State El.37, 685 (1994)CrossRefGoogle Scholar
  46. 46.
    Kunz, R.E.: First-Order Phase Transitions in Mesoscopic and Macroscopic Equilibrium and Nonequilibrium Systems, Ph.D. thesis, Technische Universität Berlin, 1995Google Scholar
  47. 47.
    Beynon, J.H., Gilbert, J.R.: Application of Transition State Theory to Unimolecular Reactions: An Introduction. Chichester: Wiley 1984Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. E. Kunz
    • 1
  • E. Schöll
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations