Advertisement

Pulsed dielectric spectroscopy of supercooled liquids

  • R. Böhmer
  • B. Schiener
  • J. Hemberger
  • R. V. Chamberlin
Original Contributions

Abstract

Pulsed dielectric spectroscopy is introduced as a technique for selectively emphasizing specific components of the non-exponential dielectric response of matter. Samples studied include supercooled liquid propanol, propylene carbonate, and poly(lauryl-methacrylate). It is shown that particular sequences of pulses can be used to emphasize the fast response regime, to produce a cross-over or memory effect, or to eliminate the response of selected components. Furthermore, for materials characterized by broad distributions of relaxation times, the technique facilitates the investigation of a relatively narrow band from that distribution. It is also shown that the time domain spectroscopy can be combined with conventional frequency domain techniques to provide the characterization of dielectric response over an extraordinarily broad spectral range.

PACS

77.40.+i 64.70.Pf 07.50.+f 

References

  1. 1.
    Kohlrausch, R.: Pogg. Ann. Phys.91, 179 (1854); Kohlrausch, F.: ibid. Pogg. Ann. Phys.119, 337 (1863)CrossRefGoogle Scholar
  2. 2.
    Chamberlin, R.V., Scheinfein, M.R.: Ultramicroscopy47, 408 (1992); Chamberlin, R.V.: Phys. Rev. B48, 15638 (1993)CrossRefGoogle Scholar
  3. 3.
    Mezei, F., Knaak, W., Farago, B.: Phys. Rev. Lett.58, 571 (1987)CrossRefGoogle Scholar
  4. 4.
    Persistent spectral hole burning: Science and applications. W.E. Moerner (ed.). Berlin, Heidelberg, New York: Springer 1988Google Scholar
  5. 5.
    Moerner, W.E.: Science265, 46 (1994)CrossRefGoogle Scholar
  6. 6.
    Schmidt-Rohr, K., Spiess, H.W.: Multidimensional solid state NMR and polymers. London: Academic Press 1994Google Scholar
  7. 7.
    Böhmer, R., Sanchez, E., Angell, C.A.: J. Phys. Chem.96, 9089 (1992); R. Richert, in: Disorder effects on relaxational processes, p. 333. R. Richert, A. Blumen (eds.). Berlin, Heidelberg, New York: Springer 1994CrossRefGoogle Scholar
  8. 8.
    Williams, G., Watts, D.C.: Trans. Faraday Soc.66, 80 (1970)CrossRefGoogle Scholar
  9. 9.
    Moynihan, C.T., Boesch, L.P., Laberge, N.L.: Phys. Chem. Glasses14, 122 (1973)Google Scholar
  10. 10.
    Dixon, P.K., Wu, L., Nagel, S.R., Williams, B.D., Carini, J.P.: Phys. Rev. Lett.65, 1108 (1990)CrossRefGoogle Scholar
  11. 11.
    For a recent discussion see Kob, W., Anderson, H.C.: Phys. Rev. Lett.73, 1376 (1994)CrossRefGoogle Scholar
  12. 12.
    Chamberlin, R.V., Böhmer, R., Sanchez, E., Angell, C.A.: Phys. Rev. B46, 5787 (1992); Schiener, B., Loidl, A., Chamberlin, R.V., Böhlmer, R.: J. Mol. Liq. (1995)CrossRefGoogle Scholar
  13. 13.
    Ritland, H.N.: J. Am. Ceram. Soc.39, 403 (1956)CrossRefGoogle Scholar
  14. 14.
    Böttcher, C.J.F., Bordewijk, P.: Theory of electric polarization, Vol. 2 Amsterdam: Elsevier 1978Google Scholar
  15. 15.
    Glarum, S.H.: J. Chem. Phys.33, 1371 (1960)CrossRefGoogle Scholar
  16. 16.
    Ngai, K.L.: Comments Solid State Phys.9, 127 (1979)Google Scholar
  17. 17.
    Phillips, J.C.: J. Non-Cryst. Solids172–174, 98 (1994) and: (unpublished)CrossRefGoogle Scholar
  18. 18.
    Jonscher, A.K.: Dielectric relaxation in solids. London: Chelsea 1983Google Scholar
  19. 19.
    Hunt, A.: J. Phys.6, 8087 (1994). In this paper the short time deviations from stretched exponential behavior are interpreted as being due to single-particle hopping processesGoogle Scholar
  20. 20.
    Mopsik, F.I.: Rev. Sci. Instrum.55, 79 (1984)CrossRefGoogle Scholar
  21. 21.
    Schönhals, A., Kremer, F., Hofmann, A., Fischer, E.W., Schlosser, E.: Phys. Rev. Lett.70, 3459 (1993)CrossRefGoogle Scholar
  22. 22.
    Handbook of mathematical functions. M. Abramowitz, I.A. Stegun, (eds.). New York, Dover 1972Google Scholar
  23. 23.
    Havriliak, S., Negami, S.: Polymer8, 161 (1967)CrossRefGoogle Scholar
  24. 24.
    Lundgren, L., Svendlindh, P., Nordblad, P., Beckmann, O.: Phys. Rev. Lett.51, 911 (1983)CrossRefGoogle Scholar
  25. 25.
    Binder, K., Young, A.P.: Rev. Mod. Phys.58, 801 (1986)CrossRefGoogle Scholar
  26. 26.
    Schiener, B. Böhmer, R.: J. Non-Cryst. Solids 182/180 (1995)Google Scholar
  27. 27.
    Corsaro, R.D.: J. Am. Ceram. Soc.59, 115 (1976)CrossRefGoogle Scholar
  28. 28.
    Here we have approximated the probing time scale by the maximum inA B(τ). However, in the following we use the exact result for δ=10 which gives Δ(δ)=0.23Google Scholar
  29. 29.
    Floudas, G. et al.: (unpublished)Google Scholar
  30. 30.
    Obviously, the non-equilibrium relaxation times of the one pulse experiments, evaluated att 2=(t 1/δ) may be used to serve the same purposeGoogle Scholar
  31. 31.
    Feldman, Yu.D., Zuev, Yu.F., Polygalov, E.A., Fedotov, V.D.: Colloid Polymer Sci.270, 768 (1992); Bose, T.K., Nozaki, R.: J. Mol. Liq.56, 399 (1993)CrossRefGoogle Scholar
  32. 32.
    see e.g., Macedo, P.B., Napolitano, A.: J. Res. Natl. Bur. Std. A71, 231 (1967)CrossRefGoogle Scholar
  33. 33.
    Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: J. Polymer Sci., Polmer Phys. Ed.17, 1097 (1979)CrossRefGoogle Scholar
  34. 34.
    Adachi, K., Kotaka, T.: Polymer J.14, 959 (1982)CrossRefGoogle Scholar
  35. 35.
    Hofer, K., Perez, J., Johari, G.P.: Phil. Mag. Lett.64, 37 (1991)CrossRefGoogle Scholar
  36. 36.
    Rekhson, S.M.: Glass science and technology, vol. 3, p. 1 Kreidl, N.J., Uhlmann, D.R. (eds.). Orlando; Academic Press 1986. This article gives an interesting discussion of various aspects of nonequilibriumviscoelastic response functionsGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. Böhmer
    • 1
  • B. Schiener
    • 1
  • J. Hemberger
    • 1
  • R. V. Chamberlin
    • 2
  1. 1.Institut für FestkörperphysikTechnische HochschuleDarmstadtGermany
  2. 2.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations