Advertisement

Central osteophytes develop in cartilage with abnormal structure and composition: data from the Osteoarthritis Initiative cohort

  • Martin KretzschmarEmail author
  • Ursula Heilmeier
  • Sarah C. Foreman
  • Gabby B. Joseph
  • Charles E. McCulloch
  • Michael C. Nevitt
  • Thomas M. Link
Scientific Article
  • 12 Downloads

Abstract

Objective

To investigate the natural history of central osteophytes (COs) by analyzing the structure and matrix composition of CO-associated cartilage using 3-T MRI at and 1–3 years before the onset of COs.

Materials and methods

Baseline, 4- and 6-year knee MRIs of 400 participants in the Osteoarthritis Initiative were screened for the appearance of new COs. Twenty-eight subjects developed 31 COs. Using MRIs at CO onset and 1–3 years before CO onset, cartilage T2 values were calculated for the local cartilage preceding COs and the surrounding cartilage. Cartilage lesions local to the site of COs and bone marrow edema like lesions (BMELs) subjacent to COs were graded using whole organ MRI scores (WORMS). Wilcoxon tests were used to compare T2 values from the local and the surrounding cartilage at each time point and to compare T2 and WORMS between time points. Knee symptoms were recorded during this period.

Results

All subjects showed local cartilage lesions before the development of COs. Mean cartilage WORMS increased from 1.56 ± 0.66 a period of 3 years before to 2.39 ± 0.75 with onset of COs (p = 0.008). Local T2 values in the area of the later-appearing COs were significantly higher compared with T2 values of the surrounding cartilage 3 (p = 0.044) and 2 years earlier (p = 0.031) and with the onset of COs (p = 0.025). No significant increase in symptoms was found with the onset of COs.

Conclusion

This study provides evidence that focal cartilage structural and compositional degeneration precedes COs. No significant aggravation of knee symptoms was reported during the evolution of COs.

Keywords

Osteoarthritis MRI Knee Central osteophytes 

Notes

Acknowledgements

The study was supported by the Osteoarthritis Initiative, a public–private partnership comprising five NIH contracts (National Institute of Arthritis and Musculoskeletal and Skin Diseases contracts N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262) with research conducted by the Osteoarthritis Initiative Study Investigators. Private funding partners include Merck Research, Novartis Pharmaceuticals, GlaxoSmithKline, and Pfizer; the private sector funding for the Osteoarthritis Initiative is managed by the Foundation for the National Institutes of Health. The analyses in this study were funded through the National Institute of Arthritis and Musculoskeletal and Skin Diseases grants U01-AR059507 and P50-AR060752. MK received grants from the Gottfried and Julia Bangerter-Rhyner Foundation.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Brandt KD, Radin EL, Dieppe PA, van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis. 2006;65:1261–4.CrossRefGoogle Scholar
  2. 2.
    Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 2011;7:43–9.CrossRefGoogle Scholar
  3. 3.
    Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7.CrossRefGoogle Scholar
  4. 4.
    Heinegård D, Saxne T. The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol. 2011;7:50–6.CrossRefGoogle Scholar
  5. 5.
    Li X, Cheng J, Lin K, Saadat E, et al. Quantitative MRI using T1ρ and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29:324–34.CrossRefGoogle Scholar
  6. 6.
    Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2000;215:835–40.CrossRefGoogle Scholar
  7. 7.
    Link TM, Li X. Bone marrow changes in osteoarthritis. Semin Musculoskelet Radiol. 2011;15:238–46.CrossRefGoogle Scholar
  8. 8.
    Li X, Ma BC, Bolbos RI, Stahl R, et al. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J Magn Reson Imaging. 2008;28:453–61.CrossRefGoogle Scholar
  9. 9.
    Kazakia GJ, Kuo D, Schooler J, Siddiqui S, et al. Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. Osteoarthritis Cartilage. 2013;21:94–101.CrossRefGoogle Scholar
  10. 10.
    Maas O, Joseph GB, Sommer G, Wild D, Kretzschmar M. Association between cartilage degeneration and subchondral bone remodeling in patients with knee osteoarthritis comparing MRI and (99m)Tc-DPD-SPECT/CT. Osteoarthritis Cartilage. 2015;23:1713–20.CrossRefGoogle Scholar
  11. 11.
    Draper CE, Quon A, Fredericson M, Besier TF, et al. Comparison of MRI and 18F-NaF PET/CT in patients with patellofemoral pain. J Magn Reson Imaging. 2012;36:928–32.CrossRefGoogle Scholar
  12. 12.
    Abrahim-Zadeh R, Yu JS, Resnick D. Central (interior) osteophytes of the distal femur. Imaging and pathologic findings. Investig Radiol. 1994;29:1001–5.CrossRefGoogle Scholar
  13. 13.
    McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. Am J Roentgenol. 2001;176:359–64.CrossRefGoogle Scholar
  14. 14.
    Link TM, Steinbach LS, Ghosh S, Ries M, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226:373–81.CrossRefGoogle Scholar
  15. 15.
    Felson DT, Chaisson CE, Hill CL, Totterman SM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–9.CrossRefGoogle Scholar
  16. 16.
    Sowers MF, Hayes C, Jamadar D, Capul D, et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage. 2003;11:387–93.CrossRefGoogle Scholar
  17. 17.
    Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis. 1993;52:557–63.CrossRefGoogle Scholar
  18. 18.
    Buck FM, Hoffmann A, Hofer B, Pfirrmann CW, Allgayer B. Chronic medial knee pain without history of prior trauma: correlation of pain at rest and during exercise using bone scintigraphy and MR imaging. Skeletal Radiol. 2009;38:339–47.CrossRefGoogle Scholar
  19. 19.
    Kretzschmar M, Wiewiorski M, Rasch H, Jacob AL, et al. 99mTc-DPD-SPECT/CT predicts the outcome of imaging-guided diagnostic anaesthetic injections: a prospective cohort study. Eur J Radiol. 2011;80:e410–5.CrossRefGoogle Scholar
  20. 20.
    Baum T, Stehling C, Joseph GB, et al. Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the Osteoarthritis Initiative. J Magn Reson Imaging. 2012;35(2):370–8.CrossRefGoogle Scholar
  21. 21.
    Joseph GB, Baum T, Carballido-Gamio J, et al. Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls—data from the Osteoarthritis Initiative. Arthritis Res Ther. 2011;13(5):R153.CrossRefGoogle Scholar
  22. 22.
    Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage. 2010;18(6):776–86.CrossRefGoogle Scholar
  23. 23.
    Kretzschmar M, Lin W, Nardo L, et al. Association of physical activity measured by accelerometer, knee joint abnormalities, and cartilage T2 measurements obtained from 3T magnetic resonance imaging: data from the Osteoarthritis Initiative. Arthritis Care Res. 2015;67(9):1272–80.CrossRefGoogle Scholar
  24. 24.
    Gersing AS, Solka M, Joseph GB, et al. Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48-month data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2016;24(7):1126–34.Google Scholar
  25. 25.
    Yu A, Heilmeier U, Kretzschmar M, Joseph GB, et al. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3Tesla MR-based T2 relaxation time measurements—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2015;23(9):1595–604.CrossRefGoogle Scholar
  26. 26.
    Felson DT, Nevitt MC. Epidemiologic studies for osteoarthritis: new versus conventional study design approaches. Rheum Dis Clin N Am. 2004;30:783–97.CrossRefGoogle Scholar
  27. 27.
    Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.CrossRefGoogle Scholar
  28. 28.
    Felson DT, Niu J, Guermazi A, Sack B, Aliabadi P. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis. 2011;70:1884–6.CrossRefGoogle Scholar
  29. 29.
    Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16:1433–41.Google Scholar
  30. 30.
    Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12:177–90.CrossRefGoogle Scholar
  31. 31.
    Carballido-Gamio J, Bauer JS, Stahl R, Lee K-Y, et al. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal. 2008;12:120–35.CrossRefGoogle Scholar
  32. 32.
    Carballido-Gamio J, Majumdar S. Atlas-based knee cartilage assessment. Magn Reson Med. 2011;66:574–83.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15:1833–40.Google Scholar
  34. 34.
    Olive J, D'Anjou M-A, Girard C, Laverty S, Theoret CL. Imaging and histological features of central subchondral osteophytes in racehorses with metacarpophalangeal joint osteoarthritis. Equine Vet J. 2009;41:859–64.CrossRefGoogle Scholar
  35. 35.
    Pritzker KPH, Gay S, Jimenez SA, Ostergaard K, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage. 2006;14:13–29.CrossRefGoogle Scholar

Copyright information

© ISS 2019

Authors and Affiliations

  • Martin Kretzschmar
    • 1
    Email author
  • Ursula Heilmeier
    • 1
  • Sarah C. Foreman
    • 1
  • Gabby B. Joseph
    • 1
  • Charles E. McCulloch
    • 2
  • Michael C. Nevitt
    • 2
  • Thomas M. Link
    • 1
  1. 1.Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology & Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations