Unusual manifestations of diffuse-type tenosynovial giant cell tumor in two patients: importance of radiologic-pathologic correlation

  • Ayca Dundar
  • Jason R. Young
  • Doris E. Wenger
  • Carrie Y. Inwards
  • Stephen M. BroskiEmail author
Case Report


Diffuse-type tenosynovial giant cell tumor (TSGCT) is a rare, locally aggressive neoplasm. It most commonly occurs in the knee, followed by the hip, and has distinctive imaging features, including mass-like foci of low T2 signal intensity, “blooming” on gradient-echo MRI, and pronounced uptake on FDG PET/CT. Histologically, TSGCT demonstrates a neoplastic population of mononuclear cells admixed with hemosiderin-laden macrophages, foamy histiocytes, inflammatory cells, and osteoclast-like giant cells. In cases where diffuse-type TSGCT presents in an uncommon location or with atypical features, the imaging diagnosis may be challenging. Furthermore, because of its polymorphous appearance, it may be mistaken microscopically for other neoplastic and non-neoplastic histiocytic lesions. Herein, we present two cases of diffuse-type TSGCT presenting as large masses, and underscore the importance of radiologic-pathologic correlation for accurate diagnosis.


Tenosynovial giant cell tumor Pigmented villonodular synovitis Histiocytosis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The need for informed consent was waived by the Institutional Review Board.


  1. 1.
    Ottaviani S, Ayral X, Dougados M, Gossec L. Pigmented villonodular synovitis: a retrospective single-center study of 122 cases and review of the literature. Semin Arthritis Rheum. 2011;40(6):539–46.CrossRefGoogle Scholar
  2. 2.
    Stevenson J, Jaiswal A, Gregory J, Mangham D, Cribb G, Cool P. Diffuse pigmented villonodular synovitis (diffuse-type giant cell tumour) of the foot and ankle. Bone Joint J. 2013;95(3):384–90.CrossRefGoogle Scholar
  3. 3.
    Jaffe HL. Pigmented villonodular synovitis, bursitis, and tenosynovitis. Arch Pathol. 1941;31:731–65.Google Scholar
  4. 4.
    Mastboom MJ, Hoek DM, Bovée JV, van de Sande MA, Szuhai K. Does CSF 1 overexpression or rearrangement influence biological behaviour in tenosynovial giant cell tumours of the knee? Histopathology. 2019;74(2):332–40.CrossRefGoogle Scholar
  5. 5.
    West RB, Rubin BP, Miller MA, Subramanian S, Kaygusuz G, Montgomery K, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci. 2006;103(3):690–5.CrossRefGoogle Scholar
  6. 6.
    Organization WH, Cancer IAfRo. WHO classification of tumours of soft tissue and bone. Tumours of soft tissue: introduction. Geneva: WHO; 2013. p. 281–95.Google Scholar
  7. 7.
    Murphey MD, Rhee JH, Lewis RB, Fanburg-Smith JC, Flemming DJ, Walker EA. Pigmented villonodular synovitis: radiologic-pathologic correlation. Radiographics. 2008;28(5):1493–518.CrossRefGoogle Scholar
  8. 8.
    Verspoor FG, van der Geest IC, Vegt E, Veth RP, van der Graaf WT, Schreuder HW. Pigmented villonodular synovitis: current concepts about diagnosis and management. Future Oncol. 2013;9(10):1515–31.CrossRefGoogle Scholar
  9. 9.
    Cheng XG, You YH, Liu W, Zhao T, Qu H. MRI features of pigmented villonodular synovitis (PVNS). Clin Rheumatol. 2004;23(1):31–4.CrossRefGoogle Scholar
  10. 10.
    Masih S, Antebi A. Imaging of pigmented villonodular synovitis. Semin Musculoskelet Radiol. 2003;7(3):205–16.CrossRefGoogle Scholar
  11. 11.
    Kang GH, Chi JG, Choi IH. Pigmented villonodular synovitis in the sacral joint with extensive bone destruction in a child. Pediatr Pathol. 1992;12(5):725–30.CrossRefGoogle Scholar
  12. 12.
    Melamed A, Bauer CA, Johnson JH. Iliopsoas bursal extension of arthritic disease of the hip. Radiology. 1967;89(1):54–8.CrossRefGoogle Scholar
  13. 13.
    Emile J-F, Diamond EL, Hélias-Rodzewicz Z, Cohen-Aubart F, Charlotte F, Hyman DM, et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood. 2014;124(19):3016–9.CrossRefGoogle Scholar
  14. 14.
    Garner HW, Bestic JM. Benign synovial tumors and proliferative processes. Semin Musculoskelet Radiol. 2013;17(2):177–8.CrossRefGoogle Scholar
  15. 15.
    Frick MA, Wenger DE, Adkins M. MR imaging of synovial disorders of the knee: an update. Radiol Clin N Am. 2007;45(6):1017–31 vii.CrossRefGoogle Scholar
  16. 16.
    Broski SM, Murdoch NM, Skinner JA, Wenger DE. Pigmented villonodular synovitis: potential pitfall on oncologic 18F-FDG PET/CT. Clin Nucl Med. 2016;41(1):e24–31.CrossRefGoogle Scholar
  17. 17.
    Eustace S, Goldberg R, Williamson D, Melhem E, Oladipo O, Yucel E, et al. MR imaging of soft tissues adjacent to orthopaedic hardware: techniques to minimize susceptibility artefact. Clin Radiol. 1997;52(8):589–94.CrossRefGoogle Scholar
  18. 18.
    Young JR, Johnson GB, Murphy RC, Go RS, Broski SM. (18)F-FDG PET/CT in Erdheim-Chester disease: imaging findings and potential BRAF mutation biomarker. J Nucl Med. 2018;59(5):774–9.CrossRefGoogle Scholar
  19. 19.
    Haroche J, Cohen-Aubart F, Emile J-F, Maksud P, Drier A, Tolédano D, et al. Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAFV600E-mutated Erdheim-Chester disease. J Clin Oncol. 2014;33(5):411–8.CrossRefGoogle Scholar
  20. 20.
    Arnaud L, Malek Z, Archambaud F, Kas A, Toledano D, Drier A, et al. 18F-fluorodeoxyglucose–positron emission tomography scanning is more useful in followup than in the initial assessment of patients with Erdheim-Chester disease. Arthritis Rheum. 2009;60(10):3128–38.CrossRefGoogle Scholar
  21. 21.
    Sakamoto A, Matsuyama A, Hisaoka M, Matsuda S. Bone involvement mimicking an aggressive bone lesion in a diffuse-type tenosynovial giant cell tumor in the thoracic vertebral lamina: a case report. J Orthop Case Reports. 2018;8(3):14.PubMedGoogle Scholar
  22. 22.
    Dion E, Graef C, Miquel A, Haroche J, Wechsler B, Amoura Z, et al. Bone involvement in Erdheim-Chester disease: imaging findings including periostitis and partial epiphyseal involvement. Radiology. 2006;238(2):632–9.CrossRefGoogle Scholar
  23. 23.
    Antunes C, Graca B, Donato P. Thoracic, abdominal and musculoskeletal involvement in Erdheim-Chester disease: CT, MR and PET imaging findings. Insights Imaging. 2014;5(4):473–82.CrossRefGoogle Scholar
  24. 24.
    Diamond EL, Dagna L, Hyman DM, Cavalli G, Janku F, Estrada-Veras J, et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood. 2014;124(4):483–92.CrossRefGoogle Scholar
  25. 25.
    Geldyyev A, Koleganova N, Piecha G, Sueltmann H, Finis K, Ruschaupt M, et al. High expression level of bone degrading proteins as a possible inducer of osteolytic features in pigmented villonodular synovitis. Cancer Lett. 2007;255(2):275–83.CrossRefGoogle Scholar
  26. 26.
    Arnaud L, Hervier B, Neel A, Hamidou MA, Kahn JE, Wechsler B, et al. CNS involvement and treatment with interferon-alpha are independent prognostic factors in Erdheim-Chester disease: a multicenter survival analysis of 53 patients. Blood. 2011;117(10):2778–82.CrossRefGoogle Scholar

Copyright information

© ISS 2019

Authors and Affiliations

  1. 1.Department of RadiologyMayo ClinicRochesterUSA
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations