Skeletal Radiology

, Volume 48, Issue 5, pp 773–779 | Cite as

Value of low-dose whole-body CT in the management of patients with multiple myeloma and precursor states

  • F. Joseph Simeone
  • Joel P. Harvey
  • Andrew J. Yee
  • Elizabeth K. O’Donnell
  • Noopur S. Raje
  • Martin Torriani
  • Miriam A. BredellaEmail author
Scientific Article



To determine the value of low-dose whole-body CT (WBCT) in the management of patients with multiple myeloma (MM) and precursor states.

Materials and methods

The study group comprised 116 patients (mean age: 68 ± 11 years, 48% women) who underwent WBCT for the work-up or surveillance of MM or MM precursor disease. WBCTs were reviewed for the presence of MM-related bone disease and incidental findings requiring therapy. The medical records, results from bone marrow aspirations and biopsies and follow-up imaging studies were reviewed to assess the influence of WBCT on patient management.


Whole-body CT led to a change in management in 32 patients (28%). Of those, 17 patients with MM precursor disease were found to have MM-related bone disease, 13 patients had progression of MM, requiring a change in treatment, in one patient hepatocellular carcinoma was diagnosed, requiring a change in therapy, and one patient had a rib lesion requiring intervention. In 65 patients (56%), WBCT was performed for surveillance of MM precursor disease or stable treated MM, and did not detect new lesions, thereby providing reassurance to the hematologist on disease status and management. In 15 patients (13%) WBCT was performed as a new baseline before a change or new therapy. In 4 patients (3%), WBCT was performed for a change in symptoms, but did not detect lesions that would lead to a change in management.


Whole-body CT provides important information for disease monitoring and detection of incidental findings, thereby improving the management of patients with MM.


Low-dose whole-body computed tomography WBCT Multiple myeloma Monoclonal gammopathy of undetermined significance MGUS Smoldering myeloma 



NIH grant K24 DK-109940.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived for this retrospective study.


  1. 1.
    Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60.CrossRefGoogle Scholar
  2. 2.
    Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113(22):5412–7.CrossRefGoogle Scholar
  3. 3.
    Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–9.CrossRefGoogle Scholar
  4. 4.
    Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.CrossRefGoogle Scholar
  5. 5.
    Regelink JC, Minnema MC, Terpos E, Kamphuis MH, Raijmakers PG, Pieters-van den Bos IC, et al. Comparison of modern and conventional imaging techniques in establishing multiple myeloma-related bone disease: a systematic review. Br J Haematol. 2013;162(1):50–61.CrossRefGoogle Scholar
  6. 6.
    Angtuaco EJ, Fassas AB, Walker R, Sethi R, Barlogie B. Multiple myeloma: clinical review and diagnostic imaging. Radiology. 2004;231(1):11–23.CrossRefGoogle Scholar
  7. 7.
    Landgren O, Waxman AJ. Multiple myeloma precursor disease. JAMA. 2010;304(21):2397–404.CrossRefGoogle Scholar
  8. 8.
    Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol. 1967;18(2):158–62.CrossRefGoogle Scholar
  9. 9.
    Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol. 2005;184(4):1199–204.CrossRefGoogle Scholar
  10. 10.
    Walker R, Barlogie B, Haessler J, Tricot G, Anaissie E, Shaughnessy JD Jr, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25(9):1121–8.CrossRefGoogle Scholar
  11. 11.
    Walker RC, Brown TL, Jones-Jackson LB, De Blanche L, Bartel T. Imaging of multiple myeloma and related plasma cell dyscrasias. J Nucl Med. 2012;53(7):1091–101.CrossRefGoogle Scholar
  12. 12.
    Wolf MB, Murray F, Kilk K, Hillengass J, Delorme S, Heiss C, et al. Sensitivity of whole-body CT and MRI versus projection radiography in the detection of osteolyses in patients with monoclonal plasma cell disease. Eur J Radiol. 2014;83(7):1222–30.CrossRefGoogle Scholar
  13. 13.
    Gleeson TG, Moriarty J, Shortt CP, Gleeson JP, Fitzpatrick P, Byrne B, et al. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol. 2009;38(3):225–36.CrossRefGoogle Scholar
  14. 14.
    Hur J, Yoon CS, Ryu YH, Yun MJ, Suh JS. Efficacy of multidetector row computed tomography of the spine in patients with multiple myeloma: comparison with magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography. J Comput Assist Tomogr. 2007;31(3):342–7.CrossRefGoogle Scholar
  15. 15.
    Lambert L, Ourednicek P, Meckova Z, Gavelli G, Straub J, Spicka I. Whole-body low-dose computed tomography in multiple myeloma staging: superior diagnostic performance in the detection of bone lesions, vertebral compression fractures, rib fractures and extraskeletal findings compared to radiography with similar radiation exposure. Oncol Lett. 2017;13(4):2490–4.CrossRefGoogle Scholar
  16. 16.
    Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med. 2004;351(18):1860–73.CrossRefGoogle Scholar
  17. 17.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.CrossRefGoogle Scholar
  18. 18.
    Kumar SK, Dingli D, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK, et al. Autologous stem cell transplantation in patients of 70 years and older with multiple myeloma: results from a matched pair analysis. Am J Hematol. 2008;83(8):614–7.CrossRefGoogle Scholar
  19. 19.
    Kumar SK, Dingli D, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK, et al. Outcome after autologous stem cell transplantation for multiple myeloma in patients with preceding plasma cell disorders. Br J Haematol. 2008;141(2):205–11.CrossRefGoogle Scholar
  20. 20.
    Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.CrossRefGoogle Scholar
  21. 21.
    Horger M, Claussen CD, Bross-Bach U, Vonthein R, Trabold T, Heuschmid M, et al. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol. 2005;54(2):289–97.CrossRefGoogle Scholar
  22. 22.
    Horger M, Kanz L, Denecke B, Vonthein R, Pereira P, Claussen CD, et al. The benefit of using whole-body, low-dose, nonenhanced, multidetector computed tomography for follow-up and therapy response monitoring in patients with multiple myeloma. Cancer. 2007;109(8):1617–26.CrossRefGoogle Scholar
  23. 23.
    Princewill K, Kyere S, Awan O, Mulligan M. Multiple myeloma lesion detection with whole body CT versus radiographic skeletal survey. Cancer Investig. 2013;31(3):206–11.CrossRefGoogle Scholar
  24. 24.
    Duvauferrier R, Valence M, Patrat-Delon S, Brillet E, Niederberger E, Marchand A, et al. Current role of CT and whole body MRI in multiple myeloma. Diagn Interv Imaging. 2013;94(2):169–83.CrossRefGoogle Scholar
  25. 25.
    Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114(10):2068–76.CrossRefGoogle Scholar
  26. 26.
    Cavo M, Terpos E, Nanni C, Moreau P, Lentzsch S, Zweegman S, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017;18(4):e206–17.CrossRefGoogle Scholar
  27. 27.
    Derlin T, Weber C, Habermann CR, Herrmann J, Wisotzki C, Ayuk F, et al. 18F-FDG PET/CT for detection and localization of residual or recurrent disease in patients with multiple myeloma after stem cell transplantation. Eur J Nucl Med Mol Imaging. 2012;39(3):493–500.CrossRefGoogle Scholar
  28. 28.
    Elliott BM, Peti S, Osman K, Scigliano E, Lee D, Isola L, et al. Combining FDG-PET/CT with laboratory data yields superior results for prediction of relapse in multiple myeloma. Eur J Haematol. 2011;86(4):289–98.CrossRefGoogle Scholar
  29. 29.
    Lapa C, Luckerath K, Malzahn U, Samnick S, Einsele H, Buck AK, et al. 18 FDG-PET/CT for prognostic stratification of patients with multiple myeloma relapse after stem cell transplantation. Oncotarget. 2014;5(17):7381–91.CrossRefGoogle Scholar
  30. 30.
    Moreau P, Attal M, Caillot D, Macro M, Karlin L, Garderet L, et al. Prospective evaluation of magnetic resonance imaging and [(18)F]Fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35(25):2911–8.CrossRefGoogle Scholar
  31. 31.
    Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118(23):5989–95.CrossRefGoogle Scholar
  32. 32.
    Baur-Melnyk A, Buhmann S, Becker C, Schoenberg SO, Lang N, Bartl R, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol. 2008;190(4):1097–104.CrossRefGoogle Scholar
  33. 33.
    Hillengass J, Moulopoulos LA, Delorme S, Koutoulidis V, Mosebach J, Hielscher T, et al. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the international myeloma working group. Blood Cancer J. 2017;7(8):e599.CrossRefGoogle Scholar
  34. 34.
    Kropil P, Fenk R, Fritz LB, Blondin D, Kobbe G, Modder U, et al. Comparison of whole-body 64-slice multidetector computed tomography and conventional radiography in staging of multiple myeloma. Eur Radiol. 2008;18(1):51–8.CrossRefGoogle Scholar
  35. 35.
    Wirk B, Bush CH, Hou W, Pettiford L, Moreb JS. Detection of skeletal lesions by whole body multidetector computed tomography in multiple myeloma has no impact on long-term outcomes post autologous hematopoietic cell transplantation. World J Oncol. 2012;3(4):147–57.Google Scholar
  36. 36.
    Ippolito D, Besostri V, Bonaffini PA, Rossini F, Di Lelio A, Sironi S. Diagnostic value of whole-body low-dose computed tomography (WBLDCT) in bone lesions detection in patients with multiple myeloma (MM). Eur J Radiol. 2013;82(12):2322–7.CrossRefGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • F. Joseph Simeone
    • 1
  • Joel P. Harvey
    • 1
  • Andrew J. Yee
    • 2
  • Elizabeth K. O’Donnell
    • 2
  • Noopur S. Raje
    • 2
  • Martin Torriani
    • 1
  • Miriam A. Bredella
    • 1
    Email author
  1. 1.Division of Musculoskeletal Imaging and Intervention, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Division of Hematology-OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations