Advertisement

Skeletal Radiology

, Volume 48, Issue 3, pp 349–361 | Cite as

Radiologic evaluation of fracture healing

  • Jessica S. Fisher
  • J. Jacob Kazam
  • Duretti Fufa
  • Roger J. BartolottaEmail author
Review Article
  • 679 Downloads

Abstract

While assessment of fracture healing is a common task for both orthopedic surgeons and radiologists, it remains challenging due to a lack of consensus on imaging and clinical criteria as well as the lack of a true gold standard. Further complicating this evaluation are the wide variations between patients, specific fracture sites, and fracture patterns. Research into the mechanical properties of bone and the process of bone healing has helped to guide the evaluation of fracture union. Development of standardized scoring systems and identification of specific radiologic signs have further clarified the radiologist’s role in this process. This article reviews these scoring systems and signs with regard to the biomechanical basis of fracture healing. We present the utility and limitations of current techniques used to assess fracture union as well as newer methods and potential future directions for this field.

Keywords

Fracture Healing Radiographs CT Ultrasound 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71(1–2):65–76.CrossRefGoogle Scholar
  2. 2.
    Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev. 1999;87(1–2):57–66.CrossRefGoogle Scholar
  3. 3.
    Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56(3):283–94.CrossRefGoogle Scholar
  4. 4.
    Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2(4):389–406.CrossRefGoogle Scholar
  5. 5.
    Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun. 2005;328(3):658–65.CrossRefGoogle Scholar
  6. 6.
    Du X, Xie Y, Xian CJ, Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol. 2012;227(12):3731–43.CrossRefGoogle Scholar
  7. 7.
    Phillips AM. Overview of the fracture healing cascade. Injury. 2005;36(Suppl 3):S5–7.CrossRefGoogle Scholar
  8. 8.
    Lee TC, Staines A, Taylor D. Bone adaptation to load: microdamage as a stimulus for bone remodelling. J Anat. 2002;201(6):437–46.CrossRefGoogle Scholar
  9. 9.
    Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998(355 Suppl):S7–21.Google Scholar
  10. 10.
    Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54.CrossRefGoogle Scholar
  11. 11.
    Watanabe Y, Nishizawa Y, Takenaka N, Kobayashi M, Matsushita T. Ability and limitation of radiographic assessment of fracture healing in rats. Clin Orthop Relat Res. 2009;467(8):1981–5.CrossRefGoogle Scholar
  12. 12.
    Marsh D. Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res. 1998;355(Suppl):S22–30.CrossRefGoogle Scholar
  13. 13.
    Mills L, Tsang J, Hopper G, Keenan G, Simpson AH. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res. 2016;5(10):512–9.CrossRefGoogle Scholar
  14. 14.
    Morshed S, Corrales L, Genant H, Miclau T. Outcome assessment in clinical trials of fracture-healing. J Bone Joint Surg Am. 2008;90(Suppl 1):62–7.CrossRefGoogle Scholar
  15. 15.
    Morshed S. Current options for determining fracture union. Adv Med. 2014;2014:708574.CrossRefGoogle Scholar
  16. 16.
    Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L. Risk factors contributing to fracture non-unions. Injury. 2007;38(2):S11–8.CrossRefGoogle Scholar
  17. 17.
    Donovan A, Schweitzer ME, editors. Imaging musculoskeletal trauma: interpretation and reporting. Chichester, West Sussex: Wiley-Blackwell; 2012.Google Scholar
  18. 18.
    Dijkman BG, Sprague S, Schemitsch EH, Bhandari M. When is a fracture healed? Radiographic and clinical criteria revisited. J Orthop Trauma. 2010;24(Suppl 1):S76–80.CrossRefGoogle Scholar
  19. 19.
    Beaton DE, Schemitsch E. Measures of health-related quality of life and physical function. Clin Orthop Relat Res. 2003;413:90–105.CrossRefGoogle Scholar
  20. 20.
    Axelrad TW, Einhorn TA. Use of clinical assessment tools in the evaluation of fracture healing. Injury. 2011;42(3):301–5.CrossRefGoogle Scholar
  21. 21.
    Bhandari M, Guyatt GH, Swiontkowski MF, Tornetta P, Sprague S, Schemitsch EH. A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma. 2002;16(8):562–6.CrossRefGoogle Scholar
  22. 22.
    Corrales LA, Morshed S, Bhandari M, Miclau T. Variability in the assessment of fracture-healing in orthopaedic trauma studies. J Bone Joint Surg Am. 2008;90(9):1862–8.CrossRefGoogle Scholar
  23. 23.
    Dijkman BG, Busse JW, Walter SD, Bhandari M, Investigators T. The impact of clinical data on the evaluation of tibial fracture healing. Trials. 2011;12:237.CrossRefGoogle Scholar
  24. 24.
    Webb J, Herling G, Gardner T, Kenwright J, Simpson AH. Manual assessment of fracture stiffness. Injury. 1996;27(5):319–20.CrossRefGoogle Scholar
  25. 25.
    Hammer R, Norrbom H. Evaluation of fracture stability. A mechanical simulator for assessment of clinical judgement. Acta Orthop Scand. 1984;55(3):330–3.CrossRefGoogle Scholar
  26. 26.
    Leow JM, Clement ND, Tawonsawatruk T, Simpson CJ, Simpson AH. The radiographic union scale in tibial (RUST) fractures: reliability of the outcome measure at an independent centre. Bone Joint Res. 2016;5(4):116–21.CrossRefGoogle Scholar
  27. 27.
    Bohl DD, Lese AB, Patterson JT, Grauer JN, Dodds SD. Routine imaging after operatively repaired distal radius and scaphoid fractures: a survey of hand surgeons. J Wrist Surg. 2014;3(4):239–44.CrossRefGoogle Scholar
  28. 28.
    Eastaugh-Waring SJ, Joslin CC, Hardy JR, Cunningham JL. Quantification of fracture healing from radiographs using the maximum callus index. Clin Orthop Relat Res. 2009;467(8):1986–91.CrossRefGoogle Scholar
  29. 29.
    Panjabi MM, Walter SD, Karuda M, White AA, Lawson JP. Correlations of radiographic analysis of healing fractures with strength: a statistical analysis of experimental osteotomies. J Orthop Res. 1985;3(2):212–8.CrossRefGoogle Scholar
  30. 30.
    Sano H, Uhthoff HK, Backman DS, Yeadon A. Correlation of radiographic measurements with biomechanical test results. Clin Orthop Relat Res. 1999;368:271–8.CrossRefGoogle Scholar
  31. 31.
    Hammer RR, Hammerby S, Lindholm B. Accuracy of radiologic assessment of tibial shaft fracture union in humans. Clin Orthop Relat Res. 1985;199:233–8.Google Scholar
  32. 32.
    Kooistra BW, Dijkman BG, Busse JW, Sprague S, Schemitsch EH, Bhandari M. The radiographic union scale in tibial fractures: reliability and validity. J Orthop Trauma. 2010;24(Suppl 1):S81–6.CrossRefGoogle Scholar
  33. 33.
    Whelan DB, Bhandari M, McKee MD, Guyatt GH, Kreder HJ, Stephen D, et al. Interobserver and intraobserver variation in the assessment of the healing of tibial fractures after intramedullary fixation. J Bone Joint Surg (Br). 2002;84(1):15–8.CrossRefGoogle Scholar
  34. 34.
    Whelan DB, Bhandari M, Stephen D, Kreder H, McKee MD, Zdero R, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010;68(3):629–32.CrossRefGoogle Scholar
  35. 35.
    Tawonsawatruk T, Hamilton DF, Simpson AH. Validation of the use of radiographic fracture-healing scores in a small animal model. J Orthop Res. 2014;32(9):1117–9.CrossRefGoogle Scholar
  36. 36.
    Bhandari M, Chiavaras M, Ayeni O, Chakraverrty R, Parasu N, Choudur H, et al. Assessment of radiographic fracture healing in patients with operatively treated femoral neck fractures. J Orthop Trauma. 2013;27(9):e213–9.CrossRefGoogle Scholar
  37. 37.
    Bhandari M, Chiavaras MM, Parasu N, Choudur H, Ayeni O, Chakravertty R, et al. Radiographic union score for hip substantially improves agreement between surgeons and radiologists. BMC Musculoskelet Disord. 2013;14:70.CrossRefGoogle Scholar
  38. 38.
    Chiavaras MM, Bains S, Choudur H, Parasu N, Jacobson J, Ayeni O, et al. The radiographic union score for hip (RUSH): the use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skelet Radiol. 2013;42(8):1079–88.CrossRefGoogle Scholar
  39. 39.
    Frank T, Osterhoff G, Sprague S, Garibaldi A, Bhandari M, Slobogean GP, et al. The radiographic union score for hip (RUSH) identifies radiographic nonunion of femoral neck fractures. Clin Orthop Relat Res. 2016;474(6):1396–404.CrossRefGoogle Scholar
  40. 40.
    Patel SP, Anthony SG, Zurakowski D, Didolkar MM, Kim PS, Wu JS, et al. Radiographic scoring system to evaluate union of distal radius fractures. J Hand Surg [Am]. 2014;39(8):1471–9.CrossRefGoogle Scholar
  41. 41.
    Salih S, Blakey C, Chan D, McGregor-Riley JC, Royston SL, Gowlett S, et al. The callus fracture sign: a radiological predictor of progression to hypertrophic non-union in diaphyseal tibial fractures. Strategies Trauma Limb Reconstr. 2015;10(3):149–53.CrossRefGoogle Scholar
  42. 42.
    Lujan TJ, Madey SM, Fitzpatrick DC, Byrd GD, Sanderson JM. Bottlang M. A computational technique to measure fracture callus in radiographs. J Biomech. 2010;43(4):792–5.CrossRefGoogle Scholar
  43. 43.
    Yee AJ, Bae HW, Friess D, Robbin M, Johnstone B, Yoo JU. Accuracy and interobserver agreement for determinations of rabbit posterolateral spinal fusion. Spine (Phila Pa 1976). 2004;29(12):1308–13.CrossRefGoogle Scholar
  44. 44.
    Markel MD, Morin RL, Wikenheiser MA, Lewallen DG, Chao EY. Quantitative CT for the evaluation of bone healing. Calcif Tissue Int. 1991;49(6):427–32.CrossRefGoogle Scholar
  45. 45.
    Grigoryan M, Lynch JA, Fierlinger AL, Guermazi A, Fan B, MacLean DB, et al. Quantitative and qualitative assessment of closed fracture healing using computed tomography and conventional radiography. Acad Radiol. 2003;10(11):1267–73.CrossRefGoogle Scholar
  46. 46.
    Krestan CR, Noske H, Vasilevska V, Weber M, Schueller G, Imhof H, et al. MDCT versus digital radiography in the evaluation of bone healing in orthopedic patients. AJR Am J Roentgenol. 2006;186(6):1754–60.CrossRefGoogle Scholar
  47. 47.
    Kuhlman JE, Fishman EK, Magid D, Scott WW, Brooker AF, Siegelman SS. Fracture nonunion: CT assessment with multiplanar reconstruction. Radiology. 1988;167(2):483–8.CrossRefGoogle Scholar
  48. 48.
    Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am. 2006;88(4):692–7.PubMedGoogle Scholar
  49. 49.
    Braunstein EM, Goldstein SA, Ku J, Smith P, Matthews LS. Computed tomography and plain radiography in experimental fracture healing. Skelet Radiol. 1986;15(1):27–31.CrossRefGoogle Scholar
  50. 50.
    Firoozabadi R, Morshed S, Engelke K, Prevrhal S, Fierlinger A, Miclau T, et al. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies--focus on wrist fracture. J Orthop Trauma. 2008;22(8 Suppl):S83–90.CrossRefGoogle Scholar
  51. 51.
    den Boer FC, Bramer JA, Patka P, Bakker FC, Barentsen RH, Feilzer AJ, et al. Quantification of fracture healing with three-dimensional computed tomography. Arch Orthop Trauma Surg. 1998;117(6–7):345–50.CrossRefGoogle Scholar
  52. 52.
    Sigurdsen U, Reikeras O, Hoiseth A, Utvag SE. Correlations between strength and quantitative computed tomography measurement of callus mineralization in experimental tibial fractures. Clin Biomech (Bristol, Avon). 2011;26(1):95–100.CrossRefGoogle Scholar
  53. 53.
    Lynch JA, Grigoryan M, Fierlinger A, Guermazi A, Zaim S, MacLean DB, et al. Measurement of changes in trabecular bone at fracture sites using X-ray CT and automated image registration and processing. J Orthop Res. 2004;22(2):362–7.CrossRefGoogle Scholar
  54. 54.
    Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.CrossRefGoogle Scholar
  55. 55.
    Augat P, Morgan EF, Lujan TJ, MacGillivray TJ, Cheung WH. Imaging techniques for the assessment of fracture repair. Injury. 2014;45(Suppl 2):S16–22.CrossRefGoogle Scholar
  56. 56.
    Moed BR, Subramanian S, van Holsbeeck M, Watson JT, Cramer KE, Karges DE, et al. Ultrasound for the early diagnosis of tibial fracture healing after static interlocked nailing without reaming: clinical results. J Orthop Trauma. 1998;12(3):206–13.CrossRefGoogle Scholar
  57. 57.
    Moed BR, Watson JT, Goldschmidt P, van Holsbeeck M. Ultrasound for the early diagnosis of fracture healing after interlocking nailing of the tibia without reaming. Clin Orthop Relat Res. 1995;310:137–44.Google Scholar
  58. 58.
    Wawrzyk M, Sokal J, Andrzejewska E, Przewratil P. The role of ultrasound imaging of callus formation in the treatment of long bone fractures in children. Pol J Radiol. 2015;80:473–8.CrossRefGoogle Scholar
  59. 59.
    Risselada M, Kramer M, Saunders JH, Verleyen P, Van Bree H. Power Doppler assessment of the neovascularization during uncomplicated fracture healing of long bones in dogs and cats. Vet Radiol Ultrasound. 2006;47(3):301–6.CrossRefGoogle Scholar
  60. 60.
    Rawool NM, Goldberg BB, Forsberg F, Winder AA, Hume E. Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound. J Ultrasound Med. 2003;22(2):145–53.CrossRefGoogle Scholar
  61. 61.
    Niikura T, Lee SY, Sakai Y, Nishida K, Kuroda R, Kurosaka M. Comparison of radiographic appearance and bone scintigraphy in fracture nonunions. Orthopedics. 2014;37(1):e44–50.CrossRefGoogle Scholar
  62. 62.
    Piert M, Zittel TT, Becker GA, Jahn M, Stahlschmidt A, Maier G, et al. Assessment of porcine bone metabolism by dynamic. J Nucl Med. 2001;42(7):1091–100.PubMedGoogle Scholar
  63. 63.
    Messa C, Goodman WG, Hoh CK, Choi Y, Nissenson AR, Salusky IB, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77(4):949–55.PubMedGoogle Scholar
  64. 64.
    Narita N, Kato K, Nakagaki H, Ohno N, Kameyama Y, Weatherell JA. Distribution of fluoride concentration in the rat's bone. Calcif Tissue Int. 1990;46(3):200–4.CrossRefGoogle Scholar
  65. 65.
    Hsu WK, Feeley BT, Krenek L, Stout DB, Chatziioannou AF, Lieberman JR. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur J Nucl Med Mol Imaging. 2007;34(8):1291–301.CrossRefGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • Jessica S. Fisher
    • 1
    • 2
  • J. Jacob Kazam
    • 1
    • 2
  • Duretti Fufa
    • 1
    • 3
  • Roger J. Bartolotta
    • 1
    • 2
    Email author
  1. 1.Weill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of RadiologyNew York-Presbyterian HospitalNew YorkUSA
  3. 3.Hand and Upper Extremity SurgeryHospital for Special SurgeryNew YorkUSA

Personalised recommendations