Advertisement

Skeletal Radiology

, Volume 48, Issue 2, pp 195–207 | Cite as

Instability and impending instability in patients with vertebral metastatic disease

  • Antonio LeoneEmail author
  • Alessandro Cianfoni
  • Viola Zecchi
  • Maria Cristina Cortese
  • Nicolò Rumi
  • Cesare Colosimo
Review Article
  • 248 Downloads

Abstract

Metastatic disease commonly involves the spine with an increasing incidence due to a worldwide rise of cancer incidence and a longer survival of patients with osseous metastases. Metastases compromise the mechanical integrity of the vertebra and make it susceptible to fracture. Patients with pathological vertebral fracture often become symptomatic, with mechanical pain generally due to intervertebral instability, and may develop spinal cord compression and neurological deficits. Advances in imaging, radiotherapy, as well as in spinal surgery techniques, have allowed the evolution from conventional palliative external beam radiotherapy to modern stereotactic radiosurgery and from traditional open surgery to less-invasive, and sometimes prophylactic stabilization surgical treatments. It is therefore clear that fracture risk prediction, and maintenance or restoration of intervertebral stability, are important objectives in the management of these patients. Correlation between imaging findings and clinical manifestations is crucial, and a common knowledge base for treatment team members rather than a compartmentalized view is very important. This article reviews the literature on the imaging and clinical diagnosis of intervertebral instability and impending instability in the setting of spine metastatic disease, including the spinal instability neoplastic score, which is a reliable tool for diagnosing unstable or potentially unstable metastatic spinal lesions, and on the different elements considered for treatment.

Keywords

Spine Spine, instability Spine, metastases Spine, stabilization Spine imaging 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Wong DA, Fornasier VL, MacNab I. Spinal metastases: the obvious, the occult, and the impostors. Spine (Phila Pa 1976). 1990;15(1):1–4.Google Scholar
  2. 2.
    Ortiz Gómez JA. The incidence of vertebral body metastases. Int Orthop. 1995;19(5):309–11.PubMedGoogle Scholar
  3. 3.
    Bilsky M, Smith M. Surgical approach to epidural spinal cord compression. Hematol Oncol Clin North Am. 2006;20(6):1307–17.PubMedGoogle Scholar
  4. 4.
    Krishnaney AA, Steinmetz MP, Benzel EC. Biomechanics of metastatic spine cancer. Neurosurg Clin N Am. 2004;15(4):375–80.PubMedGoogle Scholar
  5. 5.
    Bilsky MH, Azeem S. The NOMS framework for decision making in metastatic cervical spine tumors. Curr Opin Orthop. 2007;18(03):263–9.Google Scholar
  6. 6.
    Laufer I, Rubin DG, Lis E, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–51.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Barzilai O, Laufer I, Yamada Y, et al. Integrating evidence-based medicine for treatment of spinal metastases into a decision framework: neurologic, oncologic, mechanicals stability, and systemic disease. J Clin Oncol. 2017;35(21):2419–27.PubMedGoogle Scholar
  8. 8.
    Bilsky MH, Laufer I, Fourney DR, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8.PubMedGoogle Scholar
  9. 9.
    Fisher CG, Di Paola CP, Ryken TC, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology study group. Spine (Phila Pa 1976). 2010;35:E1221–9.Google Scholar
  10. 10.
    Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology. 2007;245:62–77.PubMedGoogle Scholar
  11. 11.
    Pope MH, Panjabi M. Biomechanical definitions of spinal instability. Spine. 1985;10:255–6.PubMedGoogle Scholar
  12. 12.
    Frymoyer JW, Selby DK. Segmental instability: rationale for treatment. Spine. 1985;10:280–6.PubMedGoogle Scholar
  13. 13.
    Fourney DR, Gokaslan ZL. Spinal instability and deformity due to neoplastic conditions. Neurosurg Focus. 2003;14:E8.PubMedGoogle Scholar
  14. 14.
    Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine. 1983;8:817–31.PubMedGoogle Scholar
  15. 15.
    Kostuik J, Weinstein J. Differential diagnosis and surgical treatment of metastatic spine tumors. In: Frymoyer JW, Ducker TB, Hadler MN, et al., editors. The adult spine: principles and practice. New York: Raven Press; 1991. p. 861–88.Google Scholar
  16. 16.
    Weber MH, Burch M, Buckley J, et al. Instability and impending instability of the thoracolumbar spine in patients with spinal metastases: a systematic review. Int J Oncol. 2011;38:5–12.PubMedGoogle Scholar
  17. 17.
    Aebi M. Classification of thoracolumbar fractures and dislocations. Eur Spine J. 2010;19(Suppl 1):2–7.Google Scholar
  18. 18.
    Whyne CM, McLachlin S, Burke M, et al. Biomechanics of vertebral fractures. In: Manfrè L, editor. Vertebral lesions. Cham: Springer International Publishing AG; 2017. p. 31–63.Google Scholar
  19. 19.
    Benzel EC, Kayanja M, Fleischman A, Roy S. Spine biomechanics: fundamentals and future. Clin Neurosurg. 2006;53:98–105.PubMedGoogle Scholar
  20. 20.
    Yuh WT, Quets JP, Lee HJ, et al. Anatomic distribution of metastases in the vertebral body and modes of hematogenous spread. Spine. 1996;21(19):2243–50.PubMedGoogle Scholar
  21. 21.
    Dimar JR, Voor MJ, Zhang YM, Glassman SD. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body. Spine. 1998;23:1209–14.PubMedGoogle Scholar
  22. 22.
    Windhagen HJ, Hipp JA, Silva MJ, Lipson SJ, Hayes WC. Predicting failure of thoracic vertebrae with simulated and actual metastatic defects. Clin Orthop Relat Res. 1997;344:313–9.Google Scholar
  23. 23.
    Giambini H, Fang Z, Zeng H, Camp JJ, Yaszemski MJ, Lu L. Noninvasive failure load prediction of vertebrae with simulated lytic defects and biomaterial augmentation. Tissue Eng Part C Methods. 2016;22(8):717–24.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine. 1997;22:239–45.PubMedGoogle Scholar
  25. 25.
    Whyne CM, Hu SS, Lotz JC. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite element model. Spine. 2003;28:652–60.PubMedGoogle Scholar
  26. 26.
    Tschirhart CE, Nagpurkar A, Whyne CM. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J Biomech. 2004;37:653–60.PubMedGoogle Scholar
  27. 27.
    Tschirhart CE, Finkelstein JA, Whyne CM. Metastatic burst fracture risk assessment based on complex loading of the thoracic spine. Ann Biomed Eng. 2006;34:494–505.PubMedGoogle Scholar
  28. 28.
    Tschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech. 2007;40:46–54.PubMedGoogle Scholar
  29. 29.
    Fehlings MD, David KS, Furlan JC, et al. Oncologic instability of the cervical spine: a systematic review. Can J Surg. 2008;51(suppl):11.Google Scholar
  30. 30.
    Fourney DR, Frangou EM, Ryken TC, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7.PubMedGoogle Scholar
  31. 31.
    Fox S, Spiess M, Hnenny L, Fourney DR. Spinal instability neoplastic score (SINS): reliability among spine fellows and resident physicians in orthopedic surgery and neurosurgery global. Spine J. 2017;7(8):744–8.Google Scholar
  32. 32.
    Campos M, Urrutia J, Zamora T, et al. The spine instability neoplastic score: an independent reliability and reproducibility analysis. Spine J. 2014;14:1466–9.PubMedGoogle Scholar
  33. 33.
    Fisher CG, Schouten R, Versteeg AL, et al. Reliability of the spinal instability neoplastic score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases. Radiat Oncol. 2014;9:69.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Fisher CG, Versteeg AL, Schouten R, et al. Reliability of the spinal instability neoplastic scale among radiologists: an assessment of instability secondary to spinal metastases. AJR Am J Roentgenol. 2014;203:869–74.PubMedGoogle Scholar
  35. 35.
    Versteeg AL, Verlaan JJ, Sahgal A, et al. The spinal instability neoplastic score: impact on oncologic decision-making. Spine (Phila Pa 1976). 2016;41(Suppl 20):S231–7.Google Scholar
  36. 36.
    Arana E, Kovacs FM, Royuela A, et al. Spine instability neoplastic score: agreement across different medical and surgical specialties. Spine J. 2016;16:591–9.PubMedGoogle Scholar
  37. 37.
    Szendrői M, Antal I, Szendrői A, Lazáry Á, Varga PP. Diagnostic algorithm, prognostic factors and surgical treatment of metastatic cancer diseases of the long bones and spine. EFORT Open Rev. 2017;2(9):372–81.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Mendel E, Bourekas E, Gerszten P, Golan JD. Percutaneous techniques in the treatment of spine tumors: what are the diagnostic and therapeutic indications and outcomes? Spine (Phila Pa 1976). 2009;34(22 Suppl):S93–100.Google Scholar
  39. 39.
    Deschamps F, de Baere T. Cementoplasty of bone metastases. Diagn Interv Imaging. 2012;93:685–9.PubMedGoogle Scholar
  40. 40.
    Health Quality Ontario. Vertebral augmentation involving vertebroplasty or kyphoplasty for cancer-related vertebral compression fractures: a systematic review. Ont Health Technol Assess Ser. 2016;16(11):1–202.PubMedCentralGoogle Scholar
  41. 41.
    Barr JD, Jensen ME, Hirsch JA, et al. Position statement on percutaneous vertebral augmentation: a consensus statement developed by the Society of Interventional Radiology (SIR), American Association of Neurological Surgeons (AANS) and the Congress of Neurological Surgeons (CNS), American College of Radiology (ACR), American Society of Neuroradiology (ASNR), American Society of Spine Radiology (ASSR), Canadian Interventional Radiology Association (CIRA), and the Society of NeuroInterventional Surgery (SNIS). J Vasc Interv Radiol. 2014;25(2):171–81.PubMedGoogle Scholar
  42. 42.
    Rasulova N, Lyubshin V, Djalalov F, et al. Strategy for bone metastases treatment in patients with impending cord compression or vertebral fractures: a pilot study. World J Nucl Med. 2011;10(1):14–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996;199:241–7.PubMedGoogle Scholar
  44. 44.
    Shimony JS, Gilula LA, Zeller AJ, Brown DB, Aebli N. Percutaneous vertebroplasty for malignant compression fractures with epidural involvement. Radiology. 2004;232:846–53.PubMedGoogle Scholar
  45. 45.
    Berenson J, Pflugmacher R, Jarzem P, Cancer Patient Fracture Evaluation (CAFE) Investigators, et al. Balloon kyphoplasty versus nonsurgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(03):225–35.PubMedGoogle Scholar
  46. 46.
    Calmels V, Vallée JN, Rose M, Chiras J. Osteoblastic and mixed spinal metastases: evaluation of the analgesic efficacy of percutaneous vertebroplasty. AJNR Am J Neuroradiol. 2007;28:570–4.PubMedGoogle Scholar
  47. 47.
    Tian QH, Sun XQ, Lu YY, et al. Percutaneous vertebroplasty for palliative treatment of painful osteoblastic spinal metastases: a single-center experience. J Vasc Interv Radiol. 2016;27(9):1420–4.PubMedGoogle Scholar
  48. 48.
    Wang Y, Liu H, Pi B, Yang H, Qian Z, Zhu X. Clinical evaluation of percutaneous kyphoplasty in the treatment of osteolytic and osteoblastic metastatic vertebral lesions. Int J Surg. 2016;30:161–5.PubMedGoogle Scholar
  49. 49.
    Chen G, Luo ZP, Zhang H, Nalajala B, Yang H. Percutaneous kyphoplasty in the treatment of painful osteoblastic metastatic spinal lesions. J Clin Neurosci. 2013;20(7):948–50.PubMedGoogle Scholar
  50. 50.
    Diel P, Röder C, Perler G, et al. Radiographic and safety details of vertebral body stenting: results from a multicenter chart review. BMC Musculoskelet Disord. 2013 Aug 8;14:233.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Noriega D, Krüger A, Ardura F, et al. Clinical outcome after the use of a new craniocaudal expandable implant for vertebral compression fracture treatment: one year results from a prospective multicentric study. Biomed Res Int. 2015;2015:927813.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Togawa D, Kovacic JJ, Bauer TW, Reinhardt MK, Brodke DS, Lieberman IH. Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine: percutaneous vertebroplasty versus kyphoplasty. Spine (Phila Pa 1976). 2006;31(1):E4–10.Google Scholar
  53. 53.
    Kassamali RH, Ganeshan A, Hoey ET, Crowe PM, Douis H, Henderson J. Pain management in spinal metastases: the role of percutaneous vertebral augmentation. Ann Oncol. 2011;22(4):782–6.PubMedGoogle Scholar
  54. 54.
    Gerszten PC, Germanwala A, Burton SA, Welch WC, Ozhasoglu C, Vogel WJ. Combination kyphoplasty and spinal radiosurgery: a new treatment paradigm for pathological fractures. J Neurosurg Spine. 2005;3:296–301.PubMedGoogle Scholar
  55. 55.
    Yang PL, He XJ, Li HP, Zang QJ, Wang GY. Image-guided minimally invasive percutaneous treatment of spinal metastasis. Exp Ther Med. 2017;13(2):705–9.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Katonis P, Pasku D, Alpantaki K, Bano A, Tzanakakis G, Karantanas A. Treatment of pathologic spinal fractures with combined radiofrequency ablation and balloon kyphoplasty. World J Surg Oncol. 2009;7:90.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kam NM, Maingard J, Kok HK, et al. Combined vertebral augmentation and radiofrequency ablation in the management of spinal metastases: an update. Curr Treat Options in Oncol. 2017;18(12):74.Google Scholar
  58. 58.
    Schmidt R, Cakir B, Mattes T, Wegener M, Puhl W, Richter M. Cement leakage during vertebroplasty: an underestimated problem? Eur Spine J. 2005;14:466–73.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Tsoumakidou G, Too CW, Koch G, et al. CIRSE guidelines on percutaneous vertebral augmentation. Cardiovasc Intervent Radiol. 2017;40(3):331–42.PubMedGoogle Scholar
  60. 60.
    Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology. 1996;200:525–30.PubMedGoogle Scholar
  61. 61.
    Cianfoni A, Raz E, Mauri S, et al. Vertebral augmentation for neoplastic lesions with posterior wall erosion and epidural mass. AJNR Am J Neuroradiol. 2015;36(1):210–8.PubMedGoogle Scholar
  62. 62.
    Saliou G, Kocheida el M, Lehmann P, et al. Percutaneous vertebroplasty for pain management in malignant fracture of the spine with epidural involvement. Radiology. 2010;254:882–9.PubMedGoogle Scholar
  63. 63.
    Foro Arnalot P, Fontanals AV, Galceran JC, et al. Randomized clinical trial with two palliative radiotherapy regimens in painful bone metastases: 30 Gy in 10 fractions compared with 8 Gy in single fraction. Radiother Oncol. 2008;89:150–5.PubMedGoogle Scholar
  64. 64.
    Nguyen J, Chow E, Zeng L, et al. Palliative response and functional interference outcomes using the brief pain inventory for spinal bony metastases treated with conventional radiotherapy. Clin Oncol (R Coll Radiol). 2011;23:485–91.Google Scholar
  65. 65.
    Hartsell WF, Scott CB, Bruner DW, et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst. 2005;97:798–804.PubMedGoogle Scholar
  66. 66.
    Tong D, Gillick L, Hendrickson FR. The palliation of symptomatic osseous metastases: final results of the study by the radiation therapy oncology group. Cancer. 1982;50(05):893–9.PubMedGoogle Scholar
  67. 67.
    Yamada Y, Bilsky MH, Lovelock DM, et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71:484–90.PubMedGoogle Scholar
  68. 68.
    Redmond KJ, Sahgal A, Foote M, et al. Single versus multiple session stereotactic body radiotherapy for spinal metastasis: the risk-benefit ratio. Future Oncol. 2015;11(17):2405–15.PubMedGoogle Scholar
  69. 69.
    Sahgal A, Weinberg V, Ma L, et al. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys. 2013;85:341–7.PubMedGoogle Scholar
  70. 70.
    Wang XS, Rhines LD, Shiu AS, et al. Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1-2 trial. Lancet Oncol. 2012;13(4):395–402.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Lee S, Chun M. Pain relief by CyberKnife radiosurgery for spinal metastasis. Tumori. 2012;98(2):238–42.PubMedGoogle Scholar
  72. 72.
    Nguyen QN, Shiu AS, Rhines LD, et al. Management of spinal metastases from renal cell carcinoma using stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;76:1185–92.PubMedGoogle Scholar
  73. 73.
    Sahgal A, Bilsky M, Chang EL, et al. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine. 2011;14:151–66.PubMedGoogle Scholar
  74. 74.
    Mizumoto M, Harada H, Asakura H, et al. Radiotherapy for patients with metastases to the spinal column: a review of 603 patients at Shizuoka Cancer Center Hospital. Int J Radiat Oncol Biol Phys. 2011;79:208–13.PubMedGoogle Scholar
  75. 75.
    Sahgal A, Whyne CM, Ma L, Larson DA, Fehlings MG. Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases. Lancet Oncol. 2013;14(8):e310–20.PubMedGoogle Scholar
  76. 76.
    Tschirhart CE, Finkelstein JA, Whyne CM. Optimization of tumor volume reduction and cement augmentation in percutaneous vertebroplasty for prophylactic treatment of spinal metastases. J Spinal Disord Tech. 2006;19(8):584–90.PubMedGoogle Scholar
  77. 77.
    Boehling NS, Grosshans DR, Allen PK, et al. Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J Neurosurg Spine. 2012;16(4):379–86.PubMedGoogle Scholar
  78. 78.
    Rose PS, Laufer I, Boland PJ, et al. Risk of fracture after single fraction image-guided intensity-modulated radiation therapy to spinal metastases. J Clin Oncol. 2009;27:5075–9.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Al-Omair A, Smith R, Kiehl TR, et al. Radiation-induced vertebral compression fracture following spine stereotactic radiosurgery: clinicopathological correlation. J Neurosurg Spine. 2013;18(5):430–5.PubMedGoogle Scholar
  80. 80.
    Sahgal A, Atenafu EG, Chao S, et al. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol. 2013;31(27):3426–31.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lutz S, Berk L, Chang E, et al. Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;79:965–76.PubMedGoogle Scholar
  82. 82.
    Bartels RH, van der Linden YM, van der Graaf WT. Spinal extradural metastasis: review of current treatment options. CA Cancer J Clin. 2008;58(4):245–59.PubMedGoogle Scholar
  83. 83.
    Klimo P Jr, Schmidt MH. Surgical management of spinal metastases. Oncologist. 2004;9(2):188–96.PubMedGoogle Scholar
  84. 84.
    White BD, Stirling AJ, Paterson E, Squith-Coe K, Melder A. Diagnosis and management of patients at risk of or with metastatic spinal cord compression: summary of NICE guidance. BMJ. 2008;337:a2538.PubMedGoogle Scholar
  85. 85.
    Tokuhashi Y, Matsuzaki H, Oda H, et al. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine. 2005;30:2186–91.PubMedGoogle Scholar
  86. 86.
    Tomita K, Kawahara N, Kobayashi T, et al. Surgical strategy for spinal metastases. Spine. 2001;26:298–306.PubMedGoogle Scholar
  87. 87.
    Daniel JW, Veiga JC. Prognostic parameters and spinal metastases: a research study. PLoS One. 2014;9(10):e109579.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Itshayek E, Candanedo C, Fraifeld S, et al. Ambulation and survival following surgery in elderly patients with metastatic epidural spinal cord compression. Spine J. 2017.Google Scholar
  89. 89.
    Gerszten PC, Mendel E, Yamada Y. Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine. 2009;34:S78–92.PubMedGoogle Scholar
  90. 90.
    Wai KW, Finkelstein JA, Tangente RP, et al. Quality of life in surgical treatment of metastatic spine disease. Spine. 2003;28:508–12.PubMedGoogle Scholar
  91. 91.
    Sundaresan N, Rothman A, Manhart K, Kelliher K. Surgery for solitary metastases of the spine: rationale and results of treatment. Spine. 2002;27:1802–6.PubMedGoogle Scholar
  92. 92.
    Finkelstein JA, Zaveri G, Wai E, Vidmar M, Kreder H, Chow E. A population-based study of surgery for spinal metastases. Survival rates and complications. J Bone Joint Surg (Br). 2003;85:1045–50.Google Scholar
  93. 93.
    Kwan MK, Lee CK, Chan CY. Minimally invasive spinal stabilization using fluoroscopic-guided percutaneous screws as a form of palliative surgery in patients with spinal metastasis. Asian Spine J. 2016;10(1):99–110.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Massicotte E, Foote M, Reddy R, Sahgal A. Minimal access spine surgery (MASS) for decompression and stabilization performed as an out-patient procedure for metastatic spinal tumours followed by spine stereotactic body radiotherapy (SBRT): first report of technique and preliminary outcomes. Technol Cancer Res Treat. 2012;11(1):15–25.PubMedGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • Antonio Leone
    • 1
    Email author
  • Alessandro Cianfoni
    • 2
    • 3
  • Viola Zecchi
    • 1
  • Maria Cristina Cortese
    • 1
  • Nicolò Rumi
    • 1
  • Cesare Colosimo
    • 1
  1. 1.Institute of Radiology, Catholic University, School of Medicine, Fondazione Policlinico Universitario A. GemelliRomeItaly
  2. 2.Department of NeuroradiologyNeurocenter of Southern SwitzerlandLuganoSwitzerland
  3. 3.Department of Neuroradiology, InselspitalBern University Hospital, University of BernBernSwitzerland

Personalised recommendations