Skeletal Radiology

, Volume 48, Issue 1, pp 77–88 | Cite as

Injuries of the adolescent girl athlete: a review of imaging findings

  • Kimberly Shampain
  • Kara Gaetke-UdagerEmail author
  • Jessica R. Leschied
  • Nathaniel B. Meyer
  • Matthew R. Hammer
  • Keri L. Denay
  • Corrie M. Yablon
Review Article


With the rising participation of girls in sports at both the recreational and elite levels, there has also been increased awareness of injuries common in this athlete population. Anatomic differences between boys and girls cause girl athletes to be predisposed to certain injuries. Certain behavioral patterns, such as eating disorders, also cause problems specific to girl athletes that may result in injury. Imaging plays a large role in diagnosis and ongoing management, but there has been only scant literature dedicated to the specific topic of imaging in girl athletes. The purpose of this article is to review the imaging findings and recommendations for injuries and other conditions affecting the adolescent girl athlete. This article first provides an overview of the key anatomic differences between boys and girls, including both static and dynamic factors, as well as non-anatomic differences, such as hormonal factors, and discusses how these differences contribute to the injury patterns that are seen more typically in girls. The article then reviews the imaging findings in injuries that are commonly seen in girl athletes. There is also a discussion of the "female athlete triad," which consists of osteoporosis, disordered eating, and amenorrhea, and the role of imaging in this condition.


Female athlete Sports medicine MRI Female athlete triad Pediatrics 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Report of Trends and Participation in Organized Youth Sports. In: Sports NCoY, ed. NCYS membership survey 2008.Google Scholar
  2. 2.
    Carpenter LJ, Acosta RV. Women in intercollegiate sport: a longitudinal national study; thirty-five year update, 1977-2012. Human Kinetics. 2012.Google Scholar
  3. 3.
    High School Athletics Participation Survey. In: Associations NFoSHS, ed. 2010–2011.Google Scholar
  4. 4.
    Jansson A, Saartok T, Werner S, Renstrom P. General joint laxity in 1845 Swedish school children of different ages: age- and gender-specific distributions. Acta Paediatr. 2004;93(9):1202–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Marnach ML, Ramin KD, Ramsey PS, Song SW, Stensland JJ, An KN. Characterization of the relationship between joint laxity and maternal hormones in pregnancy. Obstet Gynecol. 2003;101(2):331–5.PubMedGoogle Scholar
  6. 6.
    Gallagher D, Visser M, De Meersman RE, Sepulveda D, Baumgartner RN, Pierson RN, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol (1985) 1997; 83(1):229–239.CrossRefPubMedGoogle Scholar
  7. 7.
    Abe T, Kearns CF, Fukunaga T. Sex differences in whole-body skeletal muscle mass measured by magnetic resonance imaging and its distribution in young Japanese adults. Br J Sports Med. 2003;37(5):436–40.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–150.CrossRefPubMedGoogle Scholar
  9. 9.
    Zeller BL, McCrory JL, Kibler WB, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449–56.CrossRefPubMedGoogle Scholar
  10. 10.
    Braten M, Terjesen T, Rossvoll I. Femoral anteversion in normal adults. Ultrasound measurements in 50 men and 50 women. Acta Orthop Scand. 1992;63(1):29–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Hilibrand MJ, Hammoud S, Bishop M, Woods D, Fredrick RW, Dodson CC. Common injuries and ailments of the female athlete; pathophysiology, treatment and prevention. Phys Sportsmed. 2015;43(4):403–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med. 1998;26(3):402–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311.CrossRefPubMedGoogle Scholar
  14. 14.
    Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech (Bristol, Avon). 2006;21(1):33–40.CrossRefGoogle Scholar
  15. 15.
    Zazulak BT, Ponce PL, Straub SJ, Medvecky MJ, Avedisian L, Hewett TE. Gender comparison of hip muscle activity during single-leg landing. J Orthop Sports Phys Ther. 2005;35(5):292–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Willson JD, Ireland ML, Davis I. Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc. 2006;38(5):945–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Reynolds ML, Ransdell LB, Lucas SM, Petlichkoff LM, Gao Y. An examination of current practices and gender differences in strength and conditioning in a sample of varsity high school athletic programs. J Strength Cond Res. 2012;26(1):174–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Stracciolini A, Yen YM, d'Hemecourt PA, Lewis CL, Sugimoto D. Sex and growth effect on pediatric hip injuries presenting to sports medicine clinic. J Pediatr Orthop B. 2016;25(4):315–21.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mason JB. Acetabular labral tears in the athlete. Clin Sports Med. 2001;20(4):779–90.CrossRefPubMedGoogle Scholar
  20. 20.
    McCarthy JC, Noble PC, Schuck MR, Wright J, Lee J. The Otto E. Aufranc Award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;393:25–37.CrossRefGoogle Scholar
  21. 21.
    Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87(7):1012–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Bache CE, Clegg J, Herron M. Risk factors for developmental dysplasia of the hip: ultrasonographic findings in the neonatal period. J Pediatr Orthop B. 2002;11(3):212–8.PubMedGoogle Scholar
  23. 23.
    Ziegert AJ, Blankenbaker DG, De Smet AA, Keene JS, Shinki K, Fine JP. Comparison of standard hip MR arthrographic imaging planes and sequences for detection of arthroscopically proven labral tear. AJR Am J Roentgenol. 2009;192(5):1397–400.CrossRefPubMedGoogle Scholar
  24. 24.
    Dinauer PA, Murphy KP, Carroll JF. Sublabral sulcus at the posteroinferior acetabulum: a potential pitfall in MR arthrography diagnosis of acetabular labral tears. AJR Am J Roentgenol. 2004;183(6):1745–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Magerkurth O, Jacobson JA, Morag Y, Fessell D, Bedi A, Sekiya JK. Prevalence of the acetabular sublabral sulcus at MR arthrography in patients under 17 years of age: does it exist? Skelet Radiol. 2015;44(7):953–61.CrossRefGoogle Scholar
  26. 26.
    Anderson SE, Siebenrock KA, Tannast M. Femoroacetabular impingement: evidence of an established hip abnormality. Radiology. 2010;257(1):8–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis—what the radiologist should know. AJR Am J Roentgenol. 2007;188(6):1540–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Piechota M, Maczuch J, Skupinski J, Kukawska-Sysio K, Wawrzynek W. Internal snapping hip syndrome in dynamic ultrasonography. J Ultrason. 2016;16(66):296–303.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hotchkiss BL, Engels JA, Forness M. Hip disorders in the adolescent. Adolesc Med State Art Rev. 2007;18(1):165–81. x-xiPubMedGoogle Scholar
  30. 30.
    Davis KW. Imaging pediatric sports injuries: lower extremity. Radiol Clin N Am. 2010;48(6):1213–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Sutton KM, Bullock JM. Anterior cruciate ligament rupture: differences between males and females. J Am Acad Orthop Surg. 2013;21(1):41–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Nguyen AD, Boling MC, Levine B, Shultz SJ. Relationships between lower extremity alignment and the quadriceps angle. Clin J Sport Med. 2009;19(3):201–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Loudon JK, Jenkins W, Loudon KL. The relationship between static posture and ACL injury in female athletes. J Orthop Sports Phys Ther. 1996;24(2):91–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med. 2003;31(6):831–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Giugliano DN, Solomon JL. ACL tears in female athletes. Phys Med Rehabil Clin N Am. 2007;18(3):417–38. viiiCrossRefPubMedGoogle Scholar
  36. 36.
    Slauterbeck J, Clevenger C, Lundberg W, Burchfield DM. Estrogen level alters the failure load of the rabbit anterior cruciate ligament. J Orthop Res. 1999;17(3):405–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med 2008; 42(6):394–412.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27(6):699–706.CrossRefPubMedGoogle Scholar
  39. 39.
    Boles CA, Ferguson C. The female athlete. Radiol Clin N Am. 2010;48(6):1249–66.CrossRefPubMedGoogle Scholar
  40. 40.
    DeHaven KE, Lintner DM. Athletic injuries: comparison by age, sport, and gender. Am J Sports Med. 1986;14(3):218–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Barber Foss KD, Myer GD, Hewett TE. Epidemiology of basketball, soccer, and volleyball injuries in middle-school female athletes. Phys Sportsmed. 2014;42(2):146–53.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Earl JE, Vetter CS. Patellofemoral pain. Phys Med Rehabil Clin N Am. 2007;18(3):439–58. viiiCrossRefPubMedGoogle Scholar
  43. 43.
    Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13(1):26–31.CrossRefPubMedGoogle Scholar
  45. 45.
    Hinckel BB, Gobbi RG, Filho EN, Pecora JR, Camanho GL, Rodrigues MB, et al. Are the osseous and tendinous-cartilaginous tibial tuberosity-trochlear groove distances the same on CT and MRI? Skelet Radiol. 2015;44(8):1085–93.CrossRefGoogle Scholar
  46. 46.
    Dejour H, Walch G, Neyret P, Adeleine P. Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot. 1990;76(1):45–54.PubMedGoogle Scholar
  47. 47.
    Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30(4):961–81.CrossRefPubMedGoogle Scholar
  48. 48.
    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ireland ML, Willson JD, Ballantyne BT, Davis IM. Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther. 2003;33(11):671–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Palmieri-Smith RM, Wojtys EM, Ashton-Miller JA. Association between preparatory muscle activation and peak valgus knee angle. J Electromyogr Kinesiol. 2008;18(6):973–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Palmieri-Smith RM, McLean SG, Ashton-Miller JA, Wojtys EM. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J Athl Train. 2009;44(3):256–63.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am J Sports Med. 2000;28(4):480–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Gholve PA, Scher DM, Khakharia S, Widmann RF, Green DW. Osgood–Schlatter syndrome. Curr Opin Pediatr. 2007;19(1):44–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Rosenberg ZS, Kawelblum M, Cheung YY, Beltran J, Lehman WB, Grant AD. Osgood-Schlatter lesion: fracture or tendinitis? Scintigraphic, CT, and MR imaging features. Radiology. 1992;185(3):853–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Lyon RM, Street CC. Pediatric sports injuries: when to refer or X-ray. Pediatr Clin N Am. 1998;45(1):221–44.CrossRefGoogle Scholar
  56. 56.
    Auringer ST, Anthony EY. Common pediatric sports injuries. Semin Musculoskelet Radiol. 1999;3(3):247–56.CrossRefPubMedGoogle Scholar
  57. 57.
    McManama GB Jr. Ankle injuries in the young athlete. Clin Sports Med. 1988;7(3):547–62.PubMedGoogle Scholar
  58. 58.
    Hunter-Griffin LY. Injuries to the leg, ankle, and foot. In: Sullivan JA, Grana WA, editors. The pediatric athlete. Park ridge, IL: American Academy of Orthopaedic Surgeons; 1990. p. 187–98.Google Scholar
  59. 59.
    Ashman CJ, Klecker RJ, Yu JS. Forefoot pain involving the metatarsal region: differential diagnosis with MR imaging. Radiographics. 2001;21(6):1425–40.CrossRefPubMedGoogle Scholar
  60. 60.
    Kinsella S, Carl R. Upper extremity overuse injuries. Clin Pediatr Emerg Med. 2013;14(318)CrossRefGoogle Scholar
  61. 61.
    Davis KW. Imaging pediatric sports injuries: upper extremity. Radiol Clin N Am. 2010;48(6):1199–211.CrossRefPubMedGoogle Scholar
  62. 62.
    Osbahr DC, Kim HJ, Dugas JR. Little league shoulder. Curr Opin Pediatr. 2010;22(1):35–40.CrossRefPubMedGoogle Scholar
  63. 63.
    Adams JE. Little league shoulder: osteochondrosis of the proximal humeral epiphysis in boy baseball pitchers. Calif Med. 1966;105(1):22–5.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hoang QB, Mortazavi M. Pediatric overuse injuries in sports. Adv Pediatr Infect Dis. 2012;59(1):359–83.Google Scholar
  65. 65.
    Zetaruk MN. The young gymnast. Clin Sports Med. 2000;19(4):757–80.CrossRefPubMedGoogle Scholar
  66. 66.
    Little JT, Klionsky NB, Chaturvedi A, Soral A, Chaturvedi A. Pediatric distal forearm and wrist injury: an imaging review. Radiographics. 2014;34(2):472–90.CrossRefPubMedGoogle Scholar
  67. 67.
    Carter SR, Aldridge MJ, Fitzgerald R, Davies AM. Stress changes of the wrist in adolescent gymnasts. Br J Radiol. 1988;61(722):109–12.CrossRefPubMedGoogle Scholar
  68. 68.
    Roy S, Caine D, Singer KM. Stress changes of the distal radial epiphysis in young gymnasts. A report of twenty-one cases and a review of the literature. Am J Sports Med. 1985;13(5):301–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Dwek JR, Cardoso F, Chung CB. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist. Pediatr Radiol. 2009;39(12):1310–6.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Mandelbaum BR, Bartolozzi AR, Davis CA, Teurlings L, Bragonier B. Wrist pain syndrome in the gymnast. Pathogenetic, diagnostic, and therapeutic considerations. Am J Sports Med. 1989;17(3):305–17.CrossRefPubMedGoogle Scholar
  71. 71.
    Hame SL, LaFemina JM, McAllister DR, Schaadt GW, Dorey FJ. Fractures in the collegiate athlete. Am J Sports Med. 2004;32(2):446–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Arendt EA. Stress fractures and the female athlete. Clin Orthop Relat Res. 2000;372:131–8.CrossRefGoogle Scholar
  73. 73.
    Markey KL. Stress fractures. Clin Sports Med. 1987;6(2):405–25.PubMedGoogle Scholar
  74. 74.
    Giladi M, Milgrom C, Simkin A, Stein M, Kashtan H, Margulies J, et al. Stress fractures and tibial bone width. a risk factor. J Bone Joint Surg Br. 1987;69(2):326–329.CrossRefGoogle Scholar
  75. 75.
    Behrens SB, Deren ME, Matson A, Fadale PD, Monchik KO. Stress fractures of the pelvis and legs in athletes: a review. Sports Health. 2013;5(2):165–74.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rauh MJ, Macera CA, Trone DW, Shaffer RA, Brodine SK. Epidemiology of stress fracture and lower-extremity overuse injury in female recruits. Med Sci Sports Exerc. 2006;38(9):1571–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Yeager KK, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Byrne S, McLean N. Elite athletes: effects of the pressure to be thin. J Sci Med Sport. 2002;5(2):80–94.CrossRefPubMedGoogle Scholar
  79. 79.
    Nichols JF, Rauh MJ, Barrack MT, Barkai HS, Pernick Y. Disordered eating and menstrual irregularity in high school athletes in lean-build and nonlean-build sports. Int J Sport Nutr Exerc Metab. 2007;17(4):364–77.CrossRefPubMedGoogle Scholar
  80. 80.
    Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med. 2006;160(2):137–42.CrossRefPubMedGoogle Scholar
  81. 81.
    Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med. 1988;16(3):209–16.CrossRefPubMedGoogle Scholar
  82. 82.
    Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2010;25(2):298–304.CrossRefPubMedGoogle Scholar
  83. 83.
    Ackerman KE, Misra M. Bone health and the female athlete triad in adolescent athletes. Phys Sportsmed. 2011;39(1):131–41.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO study group. 1 ed: World Health Organization 1994.Google Scholar
  85. 85.
    Leib ES, Lewiecki EM, Binkley N, Hamdy RC. International Society for Clinical D. Official positions of the International Society for Clinical Densitometry. J Clin Densitom. 2004;7(1):1–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Beals KA, Hill AK. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab. 2006;16(1):1–23.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • Kimberly Shampain
    • 1
  • Kara Gaetke-Udager
    • 1
    Email author
  • Jessica R. Leschied
    • 1
  • Nathaniel B. Meyer
    • 1
  • Matthew R. Hammer
    • 2
  • Keri L. Denay
    • 3
  • Corrie M. Yablon
    • 1
  1. 1.Department of RadiologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of RadiologyUT Southwestern Medical CenterDallasUSA
  3. 3.Department of Family MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations