Advertisement

Skeletal Radiology

, Volume 48, Issue 1, pp 89–101 | Cite as

Baseline knee joint effusion and medial femoral bone marrow edema, in addition to MRI-based T2 relaxation time and texture measurements of knee cartilage, can help predict incident total knee arthroplasty 4–7 years later: data from the Osteoarthritis Initiative

  • Ursula Heilmeier
  • John Mbapte Wamba
  • Gabby B. Joseph
  • Karin Darakananda
  • Jennifer Callan
  • Jan Neumann
  • Thomas M. Link
Scientific Article

Abstract

Objective

To evaluate if baseline pathological knee conditions as assessed via single features of the MR-based Whole-Organ Magnetic Resonance Imaging Scoring (WORMS), standard T2, and T2 gray-level co-occurrence matrix (GLCM) texture parameters of knee cartilage can serve as potential long-term radiological predictors of incident total knee arthroplasty (TKA) 4–7 years later.

Materials and methods

Baseline 3-T knee MRIs of 309 subjects from the Osteoarthritis Initiative (n = 81 TKA cases, with right-knee TKA 4–7 years after enrolment, and n = 228 TKA-free matched controls) were evaluated for the presence and severity of pathological knee conditions via modified WORMS. Knee cartilage was segmented and standard T2 cartilage and T2 GLCM texture measures (contrast, variance) were computed. Statistical analysis employed conditional logistic regression.

Results

We found that a one-point increase on the joint effusion scale, the bone marrow edema scale or on the cartilage lesion scale at baseline predicted incident TKA (ORs: 2.45, 1.65, and 1.37 respectively (p ≤ 0.003)). For T2 cartilage measurements, we observed that in the lateral femur, a 1-SD increase in T2 relaxation time yielded a 28% increase in the odds of TKA (1.28 [1.09–1.643], p = 0.046). When looking at cartilage texture, we similarly noted that a 1-SD increase in the cartilage texture parameter “contrast” was associated with a 33–40% increased risk of incident TKA in the lateral femur and tibia (0.003 ≤ p ≤ 0.021), as was a 1-SD increase in the texture parameter “variance” in the lateral femur (p = 0.002).

Conclusion

Radiological evaluation of standard knee MR images via single WORMS features and T2 standard and texture analysis at baseline can help predict the patient’s individual risk for an incident TKA 4–7 years later.

Keywords

Cartilage T2 relaxation time Magnetic resonance imaging Knee Total knee arthroplasty Osteoarthritis Predictive value of tests 

Notes

Acknowledgments

We would like to thank Felix Liu, John Lynch, and Nancy Lane for their valuable input and support. In addition, we would like to thank Prof. Nevitt and Prof. McCulloch for their statistical support.

Funds and grants

The study was supported by the Osteoarthritis Initiative, a public–private partnership comprising 5 NIH contracts (National Institute of Arthritis and Musculoskeletal and Skin Diseases contracts N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262), with research conducted by the Osteoarthritis Initiative Study Investigators. The study also received funding in part by the Intramural Research Program of the National Institute on Aging, NIH. Private funding partners involved are Merck Research, Novartis Pharmaceuticals, GlaxoSmithKline, and Pfizer; the private sector funding for the Osteoarthritis Initiative is orchestrated by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners. The analyses were also funded through several grants awarded by NIH NIAMS (National Institute of Arthritis and Musculoskeletal and Skin Diseases): these were NIH U01-AR059507 (to TML), NIH P50-AR060752 (to TML) and NIH R01AR064771 (to TML).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The OAI multicenter study is HIPAA-compliant and received approval by the institutional review boards at each clinical site. All study participants consented in writing to the study before study participation.

References

  1. 1.
    Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Wilson MG, Kelley K, Thornhill TS. Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am. 1990;72(6):878–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Januel JM, Chen G, Ruffieux C, Quan H, Douketis JD, Crowther MA, et al. Symptomatic in-hospital deep vein thrombosis and pulmonary embolism following hip and knee arthroplasty among patients receiving recommended prophylaxis: a systematic review. JAMA. 2012;307(3):294–303.CrossRefPubMedGoogle Scholar
  4. 4.
    Pabinger C, Berghold A, Boehler N, Labek G. Revision rates after knee replacement. Cumulative results from worldwide clinical studies versus joint registers. Osteoarthritis Cartilage. 2013;21(2):263–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Hamilton DF, Howie CR, Burnett R, Simpson AH, Patton JT. Dealing with the predicted increase in demand for revision total knee arthroplasty: challenges, risks and opportunities. Bone joint J. 2015;97-B(6):723–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Bhandari M, Smith J, Miller LE, Block JE. Clinical and economic burden of revision knee arthroplasty. Clin Med Insights Arthritis Musculoskelet Disord. 2012;5:89–94.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wluka AE, Ding C, Jones G, Cicuttini FM. The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study. Rheumatology (Oxford). 2005;44(10):1311–6.CrossRefGoogle Scholar
  9. 9.
    Scher C, Craig J, Nelson F. Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skeletal Radiol. 2008;37(7):609–17.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hafezi-Nejad N, Zikria B, Eng J, Carrino JA, Demehri S. Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the Osteoarthritis Initiative. Skeletal Radiol. 2015;44(11):1655–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Roemer FW, Kwoh CK, Hannon MJ, Hunter DJ, Eckstein F, Wang Z, et al. Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology. 2015;274(3):810–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Raynauld JP, Martel-Pelletier J, Haraoui B, Choquette D, Dorais M, Wildi LM, et al. Risk factors predictive of joint replacement in a 2-year multicentre clinical trial in knee osteoarthritis using MRI: results from over 6 years of observation. Ann Rheum Dis. 2011;70(8):1382–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Mosher TJ, Dardzinski BJ, Cartilage MRI. T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.CrossRefPubMedGoogle Scholar
  14. 14.
    Haralick RM. Statistical and structured approaches to texture. Proc IEEE. 1979;67(5):786–804.CrossRefGoogle Scholar
  15. 15.
    Joseph GB, Baum T, Carballido-Gamio J, Nardo L, Virayavanich W, Alizai H, et al. Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls--data from the Osteoarthritis Initiative. Arthritis Res Ther. 2011;13(5):R153.CrossRefGoogle Scholar
  16. 16.
    Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage. 2013;21(10):1474–84.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eitner A, Hofmann GO, Schaible HG. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front Mol Neurosci. 2017;10:349.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Yusuf E, Bijsterbosch J, Slagboom PE, Kroon HM, Rosendaal FR, Huizinga TW, et al. Association between several clinical and radiological determinants with long-term clinical progression and good prognosis of lower limb osteoarthritis. PLoS One. 2011;6(10):e25426.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pelletier JP, Cooper C, Peterfy C, Reginster JY, Brandi ML, Bruyere O, et al. What is the predictive value of MRI for the occurrence of knee replacement surgery in knee osteoarthritis? Ann Rheum Dis. 2013;72(10):1594–604.CrossRefPubMedGoogle Scholar
  21. 21.
    Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis. 1957;16(4):494–502.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Felson DT, Nevitt MC, Yang M, Clancy M, Niu J, Torner JC, et al. A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol. 2008;35(10):2047–54.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Felson DT, Niu J, Guermazi A, Sack B, Aliabadi P. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis. 2011;70(11):1884–6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Peterfy CG, Schneider E, Nevitt M. The Osteoarthritis Initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Joseph GB, McCulloch CE, Nevitt MC, Gersing AS, Schwaiger BJ, Kretzschmar M, et al. Medial femur T2 Z-scores predict the probability of knee structural worsening over 4–8 years: data from the Osteoarthritis Initiative. J Magn Reson Imaging. 2017;46(4):1128–36.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Laberge MA, Baum T, Virayavanich W, Nardo L, Nevitt MC, Lynch J, et al. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects—data from the Osteoarthritis Initiative. Skeletal Radiol. 2012;41(6):633–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Kretzschmar M, Lin W, Nardo L, Joseph GB, Dunlop DD, Heilmeier U, et al. Association of physical activity measured by accelerometer, knee joint abnormalities, and cartilage T2 measurements obtained from 3T magnetic resonance imaging: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2015;67(9):1272–80.CrossRefGoogle Scholar
  29. 29.
    Hofmann FC, Neumann J, Heilmeier U, Joseph GB, Nevitt MC, McCulloch CE, et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the Osteoarthritis Initiative. Skeletal Radiol. 2018;47(1):93–106.CrossRefPubMedGoogle Scholar
  30. 30.
    Yu A, Heilmeier U, Kretzschmar M, Joseph GB, Liu F, Liebl H, et al. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3 T MR-based T2 relaxation time measurements—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2015;23(9):1595–604.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kretzschmar M, Heilmeier U, Yu A, Joseph GB, Liu F, Solka M, et al. Longitudinal analysis of cartilage T2 relaxation times and joint degeneration in African American and Caucasian American women over an observation period of 6 years—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2016;24(8):1384–91.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gersing AS, Schwaiger BJ, Nevitt MC, Joseph GB, Chanchek N, Guimaraes JB, et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the Osteoarthritis Initiative. Radiology. 2017;284(2):508–20.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Joseph GB, McCulloch CE, Nevitt MC, Heilmeier U, Nardo L, Lynch JA, et al. A reference database of cartilage 3 T MRI T2 values in knees without diagnostic evidence of cartilage degeneration: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2015;23(6):897–905.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wise BL, Niu J, Guermazi A, Liu F, Heilmeier U, Ku E, et al. Magnetic resonance imaging lesions are more severe and cartilage T2 relaxation time measurements are higher in isolated lateral compartment radiographic knee osteoarthritis than in isolated medial compartment disease—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2017;25(1):85-93.CrossRefPubMedGoogle Scholar
  35. 35.
    Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–41.CrossRefGoogle Scholar
  36. 36.
    Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C. T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med. 2010;63(1):181–93.PubMedGoogle Scholar
  37. 37.
    Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybernet. 1973;SMC-1:610–8.CrossRefGoogle Scholar
  40. 40.
    Carballido-Gamio J, Joseph GB, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the Osteoarthritis Initiative: a texture approach. Magn Reson Med. 2011;65(4):1184–94.CrossRefPubMedGoogle Scholar
  41. 41.
    Blumenkrantz G, Stahl R, Carballido-Gamio J, Zhao S, Lu Y, Munoz T, et al. The feasibility of characterizing the spatial distribution of cartilage T(2) using texture analysis. Osteoarthritis Cartilage. 2008;16(5):584–90.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stehling C, Baum T, Mueller-Hoecker C, Liebl H, Carballido-Gamio J, Joseph GB, et al. A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging--data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2011;19(8):984–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Jungmann PM, Kraus MS, Nardo L, Liebl H, Alizai H, Joseph GB, et al. T2 relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the Osteoarthritis Initiative. J Magn Reson Imaging. 2013;38(6):1415–24.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Eckstein F, Kwoh CK, Boudreau RM, Wang Z, Hannon MJ, Cotofana S, et al. Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative. Ann Rheum Dis. 2013;72(5):707–14.CrossRefPubMedGoogle Scholar
  45. 45.
    Conaghan PG, D'Agostino MA, Le Bars M, Baron G, Schmidely N, Wakefield R, et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann Rheum Dis. 2010;69(4):644–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Hayashi D, Roemer FW, Katur A, Felson DT, Yang SO, Alomran F, et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum. 2011;41(2):116–30.CrossRefPubMedGoogle Scholar
  47. 47.
    Atukorala I, Kwoh CK, Guermazi A, Roemer FW, Boudreau RM, Hannon MJ, et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann Rheum Dis. 2016;75(2):390–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol. 2015;11(1):35–44.CrossRefPubMedGoogle Scholar
  49. 49.
    Suarez-Almazor ME, Richardson M, Kroll TL, Sharf BF. A qualitative analysis of decision-making for total knee replacement in patients with osteoarthritis. J Clin Rheumatol. 2010;16(4):158–63.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Singh JA, Colligan RC, O'Byrne MM, Lewallen DG. Do pessimists report worse outcomes after total hip arthroplasty? BMC Musculoskelet Disord. 2016;17:203.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Borkhoff CM, Hawker GA, Wright JG. Patient gender affects the referral and recommendation for total joint arthroplasty. Clin Orthop Relat Res. 2011;469(7):1829–37.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • Ursula Heilmeier
    • 1
  • John Mbapte Wamba
    • 1
  • Gabby B. Joseph
    • 1
  • Karin Darakananda
    • 1
  • Jennifer Callan
    • 1
  • Jan Neumann
    • 1
  • Thomas M. Link
    • 1
  1. 1.Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations