Advertisement

Skeletal Radiology

, Volume 48, Issue 2, pp 285–292 | Cite as

Differentiation between malignant and benign musculoskeletal tumors using diffusion kurtosis imaging

  • Masaki Ogawa
  • Hirohito Kan
  • Nobuyuki Arai
  • Taro Murai
  • Yoshihiko Manabe
  • Yusuke Sawada
  • Yuta Shibamoto
Technical Report
  • 181 Downloads

Abstract

Objective

The purpose of this study was to evaluate differences in parameters of diffusion kurtosis imaging (DKI) and minimum apparent diffusion coefficient (ADCmin) between benign and malignant musculoskeletal tumors.

Materials and methods

In this prospective study, 43 patients were scanned using a DKI protocol on a 3-T MR scanner. Eligibility criteria were: non-fatty, non-cystic soft tissue or osteolytic tumors; > 2 cm; location in the retroperitoneum, pelvis, leg, or neck; and no prior treatment. They were clinically or histologically diagnosed as benign (n = 27) or malignant (n = 16). In the DKI protocol, diffusion-weighted imaging was performed using four b values (0-2000 s/mm2) and 21 diffusion directions. Mean kurtosis (MK) values were calculated on the MR console. A recently developed software application enabling reliable calculation was used for DKI analysis.

Results

MK showed a strong correction with ADCmin (Spearman’s rs = 0.95). Both MK and ADCmin values differed between benign and malignant tumors (p < 0.01). For benign and malignant tumors, the mean MK values (± SD) were 0.49 ± 0.17 and 1.14 ± 0.30, respectively, and ADCmin values were 1.54 ± 0.47 and 0.49 ± 0.17 × 10−3 mm2/s, respectively. At cutoffs of MK = 0.81 and ADCmin = 0.77 × 10−3 mm2/s, the specificity and sensitivity for diagnosis of malignant tumors were 96.3 and 93.8% for MK and 96.3 and 93.8% for ADCmin, respectively. The areas under the curve were 0.97 and 0.99 for MK and ADCmin, respectively (p = 0.31).

Conclusions

MK and ADCmin showed high diagnostic accuracy and strong correlation, reflecting the accuracy of MK. However, no clear added value of DKI could be demonstrated in differentiating musculoskeletal tumors.

Keywords

Diffusion kurtosis imaging Diffusion weighted imaging Musculoskeletal tumor MR imaging Differentiation 

Notes

Compliance with ethical standards

Conflict of interest

There are no financial or other conflicts of interest in relation to this paper.

References

  1. 1.
    Surov A, Nagata S, Razek AA, Tirumani SH, Wienke A, Kahn T. Comparison of ADC values in different malignancies of the skeletal musculature: a multicentric analysis. Skelet Radiol. 2015;44(7):995–1000.CrossRefGoogle Scholar
  2. 2.
    Teixeira PA, Gay F, Chen B, Zins M, Sirveaux F, Felblinger J, et al. Diffusion-weighted magnetic resonance imaging for the initial characterization of non-fatty soft tissue tumors: correlation between T2 signal intensity and ADC values. Skelet Radiol. 2016;45(2):263–71.CrossRefGoogle Scholar
  3. 3.
    Ahlawat S, Khandheria P, Subhawong TK, Fayad LM. Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol. 2015;84(6):1091–7.CrossRefGoogle Scholar
  4. 4.
    Surov A, Behrmann C. Diffusion-weighted imaging of skeletal muscle lymphoma. Skelet Radiol. 2014;43(7):899–903.CrossRefGoogle Scholar
  5. 5.
    Karchevsky M, Babb JS, Schweitzer ME. Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skelet Radiol. 2008;37(9):791–5.CrossRefGoogle Scholar
  6. 6.
    Jiang R, Jiang J, Zhao L, Zhang J, Zhang S, Yao Y, et al. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget. 2015;6(39):42380–93.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tonoyan AS, Pronin IN, Pitshelauri DI, Shishkina LV, Fadeeva LM, Pogosbekyan EL, et al. A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma. Zh Vopr Neirokhir Im N N Burdenko. 2015;79(6):5–14.CrossRefGoogle Scholar
  8. 8.
    Yuan J, Yeung DK, Mok GS, Bhatia KS, Wang YX, Ahuja AT, et al. Non-Gaussian analysis of diffusion weighted imaging in head and neck at 3T: a pilot study in patients with nasopharyngeal carcinoma. PLoS One. 2014;9(1):e87024.CrossRefGoogle Scholar
  9. 9.
    Tamura C, Shinmoto H, Soga S, Okamura T, Sato H, Okuaki T, et al. Diffusion kurtosis imaging study of prostate cancer: preliminary findings. J Magn Reson Imaging. 2014;40(3):723–9.CrossRefGoogle Scholar
  10. 10.
    Wu D, Li G, Zhang J, Chang S, Hu J, Dai Y. Characterization of breast tumors using diffusion kurtosis imaging (DKI). PLoS One. 2014;9(11):e113240.CrossRefGoogle Scholar
  11. 11.
    Hu F, Tang W, Sun Y, Wan D, Cai S, Zhang Z, et al. The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging. Oncotarget. 2017.Google Scholar
  12. 12.
    Hori M, Tsutsumi S, Yasumoto Y, Ito M, Suzuki M, Tanaka FS, et al. Cervical spondylosis: evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging. Magn Reson Imaging. 2014;32(5):428–32.CrossRefGoogle Scholar
  13. 13.
    Glenn GR, Tabesh A, Jensen JH. A simple noise correction scheme for diffusional kurtosis imaging. Magn Reson Imaging. 2015;33(1):124–33.CrossRefGoogle Scholar
  14. 14.
    Yokosawa S, Sasaki M, Bito Y, Ito K, Yamashita F, Goodwin J, et al. Optimization of scan parameters to reduce acquisition time for diffusion kurtosis imaging at 1.5T. Magn Reson Med Sci. 2016;15(1):41–8.CrossRefGoogle Scholar
  15. 15.
    Yokosawa S, Ochi S, Bito Y, Ito K, Sasaki M. Robust estimation with suppressed image blurring for diffusion kurtosis imaging using selective spatial smoothing filter. Proc Intl Soc Magn Reson Med. 2014;2581.Google Scholar
  16. 16.
    Motulsky H. Appropriate simple size. In: Motulsky H, editor. Trans intuitive biostatics. Tokyo: Science Medical; 1997. p. 196–205.Google Scholar
  17. 17.
    Oka K, Yakushiji T, Sato H, Hirai T, Yamashita Y, Mizuta H. The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skelet Radiol. 2010;39(2):141–6.CrossRefGoogle Scholar
  18. 18.
    Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion-weighted imaging: technique and applications. World J Radiol. 2016;8(9):785–98.CrossRefGoogle Scholar
  19. 19.
    Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, et al. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage. 2012;59(1):467–77.CrossRefGoogle Scholar
  20. 20.
    Zhu J, Zhuo C, Qin W, Wang D, Ma X, Zhou Y, et al. Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. Neuroimage Clin. 2015;7:170–6.CrossRefGoogle Scholar
  21. 21.
    Nagata S, Nishimura H, Uchida M, Sakoda J, Tonan T, Hiraoka K, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med. 2008;26(5):287–95.CrossRefGoogle Scholar
  22. 22.
    Douis H, Jeys L, Grimer R, Vaiyapuri S, Davies AM. Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors? Skelet Radiol. 2015;44(7):963–9.CrossRefGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • Masaki Ogawa
    • 1
  • Hirohito Kan
    • 2
  • Nobuyuki Arai
    • 2
  • Taro Murai
    • 1
  • Yoshihiko Manabe
    • 1
  • Yusuke Sawada
    • 1
  • Yuta Shibamoto
    • 1
  1. 1.Department of RadiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
  2. 2.Department of RadiologyNagoya City University HospitalNagoyaJapan

Personalised recommendations