Skeletal Radiology

, Volume 47, Issue 1, pp 107–116 | Cite as

Comparison of a fast 5-min knee MRI protocol with a standard knee MRI protocol: a multi-institutional multi-reader study

  • Erin FitzGerald Alaia
  • Alex Benedick
  • Nancy A. Obuchowski
  • Joshua M. Polster
  • Luis S. Beltran
  • Jean Schils
  • Elisabeth Garwood
  • Christopher J. Burke
  • I-Yuan Joseph Chang
  • Soterios Gyftopoulos
  • Naveen SubhasEmail author
Scientific Article



To compare diagnostic performance of a 5-min knee MRI protocol to that of a standard knee MRI.

Materials and methods

One hundred 3 T (100 patients, mean 38.8 years) and 50 1.5 T (46 patients, mean 46.4 years) MRIs, consisting of 5 fast, 2D multi-planar fast-spin-echo (FSE) sequences and five standard multiplanar FSE sequences, from two academic centers (1/2015–1/2016), were retrospectively reviewed by four musculoskeletal radiologists. Agreement between fast and standard (interprotocol agreement) and between standard (intraprotocol agreement) readings for meniscal, ligamentous, chondral, and bone pathology was compared for interchangeability. Frequency of major findings, sensitivity, and specificity was also tested for each protocol.


Interprotocol agreement using fast MRI was similar to intraprotocol agreement with standard MRI (83.0–99.5%), with no excess disagreement (≤ 1.2; 95% CI, −4.2 to 3.8%), across all structures. Frequency of major findings (1.1–22.4% across structures) on fast and standard MRI was not significantly different (p ≥ 0.215), except more ACL tears on fast MRI (p = 0.021) and more cartilage defects on standard MRI (p < 0.001). Sensitivities (59–100%) and specificities (73–99%) of fast and standard MRI were not significantly different for meniscal and ligament tears (95% CI for difference, −0.08–0.08). For cartilage defects, fast MRI was slightly less sensitive (95% CI for difference, −0.125 to −0.01) but slightly more specific (95% CI for difference, 0.01–0.5) than standard MRI.


A fast 5-min MRI protocol is interchangeable with and has similar accuracy to a standard knee MRI for evaluating internal derangement of the knee.


Knee MRI 


Compliance with ethical standards

Conflict of interest

N.O: Siemens AG Research Consultant, Elucid Bioimaging Inc. (unrelated, no conflict for this research study), SG: Federal Grant, Agency for Healthcare Research and Quality (unrelated, no conflict for this research study), NS: Research Grant, Siemens AG (unrelated, no conflict for this research study). The remainder of the authors have no conflict of interest to disclose.


  1. 1.
    Oei EH, Nikken JJ, Verstijnen AC, Ginai AZ, Myriam Hunink MG. MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology. 2003;226(3):837–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Rangger C, Klestil T, Kathrein A, Inderster A, Hamid L. Influence of magnetic resonance imaging on indications for arthroscopy of the knee. Clin Orthop Relat Res. 1996;330:133–42.CrossRefGoogle Scholar
  3. 3.
    Cheung LP, Li KC, Hollett MD, Bergman AG, Herfkens RJ. Meniscal tears of the knee: accuracy of detection with fast spin-echo MR imaging and arthroscopic correlation in 293 patients. Radiology. 1997;203(2):508–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Mackenzie R, Palmer CR, Lomas DJ, Dixon AK. Magnetic resonance imaging of the knee: diagnostic performance studies. Clin Radiol. 1996;51(4):251–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med. 2011;39(7):1557–68.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang M, Min Z, Rana N, Liu H. Accuracy of magnetic resonance imaging in grading knee chondral defects. Arthroscopy. 2013;29(2):349–56.CrossRefPubMedGoogle Scholar
  7. 7.
    Harris JD, Brophy RH, Jia G, Price B, Knopp M, Siston RA, et al. Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy. 2012;28(11):1728–37.CrossRefPubMedGoogle Scholar
  8. 8.
    Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy. 2007;23(3):312–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology. 2009;250(3):839–48.CrossRefPubMedGoogle Scholar
  10. 10.
    Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging. 2004;15(4):223–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user’s guide. Radiographics. 2005;25(5):1279–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap): a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRefPubMedGoogle Scholar
  13. 13.
    De Smet AA, Tuite MJ. Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears. AJR Am J Roentgenol. 2006;187(4):911–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics. 2014;34(4):981–99.CrossRefPubMedGoogle Scholar
  15. 15.
    Hong SH, Choi JY, Lee GK, Choi JA, Chung HW, Kang HS. Grading of anterior cruciate ligament injury: diagnostic efficacy of oblique coronal magnetic resonance imaging of the knee. J Comput Assist Tomogr. 2003;27(5):814–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Cosgarea AJ, Jay PR. Posterior cruciate ligament injuries: evaluation and management. J Am Acad Orthop Surg. 2001;9(5):297–307.CrossRefPubMedGoogle Scholar
  17. 17.
    Wind WM Jr, Bergfeld JA, Parker RD. Evaluation and treatment of posterior cruciate ligament injuries: revisited. Am J Sports Med. 2004;32(7):1765–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Brittberg M, Peterson L. Introduction to an articular cartilage classification. ICRS Newsl. 1998;1:5–8.Google Scholar
  19. 19.
    Obuchowski NA, Subhas N, Schoenhagen P. Testing for interchangeability of imaging tests. Acad Radiol. 2014;21(11):1483–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Pruessmann KP, Weiger M, Boesiger P. Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson. 2001;3(1):1–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Zech CJ, Herrmann KA, Huber A, Dietrich O, Stemmer A, Herzog P, et al. High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging. 2004;20(3):443–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Heidemann RM, Ozsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, et al. A brief review of parallel magnetic resonance imaging. Eur Radiol. 2003;13(10):2323–37.CrossRefPubMedGoogle Scholar
  23. 23.
    Kijowski R, Rosas H, Samsonov A, King K, Peters R, Liu F. Knee imaging: rapid three-dimensional fast spin-echo using compressed sensing. J Magn Reson Imaging. 2017;45:1712–22.
  24. 24.
    Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefPubMedGoogle Scholar
  25. 25.
    Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lustig M. Improved pediatric MR imaging with compressed sensing. Radiology. 2010;256(2):607–16.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med. 2016;75(1):63–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med. 2010;63(5):1144–53.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson. 2013;229:90–100.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jaspan ON, Fleysher R, Lipton ML. Compressed sensing MRI: a review of the clinical literature. Br J Radiol. 2015;88(1056):20150487.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Takahashi M, Uematsu H, Hatabu H. MR imaging at high magnetic fields. Eur J Radiol. 2003;46(1):45–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Magee T, Shapiro M, Williams D. Usefulness of simultaneous acquisition of spatial harmonics technique for MRI of the knee. AJR Am J Roentgenol. 2004;182(6):1411–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Kreitner KF, Romaneehsen B, Krummenauer F, Oberholzer K, Muller LP, Duber C. Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation. Eur Radiol. 2006;16(8):1659–66.CrossRefPubMedGoogle Scholar
  33. 33.
    Doria AS, Chaudry GA, Nasui C, Rayner T, Wang C, Moineddin R, et al. The use of parallel imaging for MRI assessment of knees in children and adolescents. Pediatr Radiol. 2010;40(3):284–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Pakin SK, Xu J, Schweitzer ME, Regatte RR. Rapid 3D-T1rho mapping of the knee joint at 3.0T with parallel imaging. Magn Reson Med. 2006;56(3):563–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26(4):1001–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol. 1997;169(4):1089–96.CrossRefPubMedGoogle Scholar
  37. 37.
    Link TM, Majumdar S, Peterfy C, Daldrup HE, Uffmann M, Dowling C, et al. High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging. 1998;16(2):147–55.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2017

Authors and Affiliations

  • Erin FitzGerald Alaia
    • 1
  • Alex Benedick
    • 2
  • Nancy A. Obuchowski
    • 3
  • Joshua M. Polster
    • 4
  • Luis S. Beltran
    • 1
  • Jean Schils
    • 4
  • Elisabeth Garwood
    • 1
  • Christopher J. Burke
    • 1
  • I-Yuan Joseph Chang
    • 5
  • Soterios Gyftopoulos
    • 1
  • Naveen Subhas
    • 4
    Email author
  1. 1.Department of Radiology, Musculoskeletal DivisionNYU Langone Medical CenterNew YorkUSA
  2. 2.School of MedicineCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Quantitative Health SciencesCleveland ClinicClevelandUSA
  4. 4.Department of Radiology, Musculoskeletal DivisionCleveland ClinicClevelandUSA
  5. 5.Texas Scottish Rite Hospital for ChildrenDallasUSA

Personalised recommendations