Skeletal Radiology

, Volume 46, Issue 11, pp 1541–1551 | Cite as

Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects

  • Manoj Mannil
  • Matthias Eberhard
  • Anton S. Becker
  • Denise Schönenberg
  • Georg Osterhoff
  • Diana P. Frey
  • Ender Konukoglu
  • Hatem Alkadhi
  • Roman GuggenbergerEmail author
Scientific Article



To develop age-, gender-, and regional-specific normative values for texture analysis (TA) of spinal computed tomography (CT) in subjects with normal bone mineral density (BMD), as defined by dual X-ray absorptiometry (DXA), and to determine age-, gender-, and regional-specific differences.

Materials and methods

In this retrospective, IRB-approved study, TA was performed on sagittal CT bone images of the thoracic and lumbar spine using dedicated software (MaZda) in 141 individuals with normal DXA BMD findings. Numbers of female and male subjects were balanced in each of six age decades. Three hundred and five TA features were analyzed in thoracic and lumbar vertebrae using free-hand regions-of-interest. Intraclass correlation (ICC) coefficients were calculated for determining intra- and inter-observer agreement of each feature. Further dimension reduction was performed with correlation analyses.


The TA features with an ICC < 0.81 indicating compromised intra- and inter-observer agreement and with Pearson correlation scores r > 0.8 with other features were excluded from further analysis for dimension reduction. From the remaining 31 texture features, a significant correlation with age was found for the features mean (r = −0.489, p < 0.001), variance (r = −0.681, p < 0.001), kurtosis (r = 0.273, p < 0.001), and WavEnLL_s4 (r = 0.273, p < 0.001). Significant differences were found between genders for various higher-level texture features (p < 0.001). Regional differences among the thoracic spine, thoracic–lumbar junction, and lumbar spine were found for most TA features (p < 0.021).


This study established normative values of TA features on CT images of the spine and showed age-, gender-, and regional-specific differences in individuals with normal BMD as defined by DXA.


Computed tomography Texture analysis Spine Bone 



Body mass index


Computed tomography


Digital imaging and communications in medicine


Dual X-ray absorptiometry


Field of view


Gray level co-occurrence matrix


Institutional review board


Peak kilovoltage


Lumbar vertebra(e)


Run length matrix


Standard deviation


Texture analysis


Thoracic vertebra(e)


Thoracic–lumbar junction


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

256_2017_2728_MOESM1_ESM.doc (35 kb)
ESM 1 (DOC 35 kb)
256_2017_2728_MOESM2_ESM.doc (319 kb)
ESM 2 (DOC 319 kb)
256_2017_2728_MOESM3_ESM.doc (138 kb)
ESM 3 (DOC 137 kb)


  1. 1.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Tourassi GD. Journey toward computer-aided diagnosis: role of image texture analysis. Radiology. 1999;213(2):317–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Kassner A, Liu F, Thornhill RE, Tomlinson G, Mikulis DJ. Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging. 2009;30(5):933–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Skogen K, Schulz A, Dormagen JB, Ganeshan B, Helseth E, Server A. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol. 2016;85(4):824–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Yu V, Ruan D, Nguyen D, Kaprealian T, Chin R, Sheng K. SU-F-R-17: advancing glioblastoma multiforme (GBM) recurrence detection with MRI image texture feature extraction and machine learning. Fifty-eighth Annual Meeting of the American Association of Physicists in Medicine. Med Phys. 2016:3376–7.Google Scholar
  6. 6.
    Ganeshan B, Miles KA, Young RC, Chatwin CR. Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol. 2009;70(1):101–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 2010;10:137–43.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rachidi M, Marchadier A, Gadois C, Lespessailles E, Chappard C, Benhamou CL. Laws’ masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis. Skeletal Radiol. 2008;37(6):541–8.CrossRefPubMedGoogle Scholar
  9. 9.
    MacKay JW, Murray PJ, Kasmai B, Johnson G, Donell ST, Toms AP. MRI texture analysis of subchondral bone at the tibial plateau. Eur Radiol. 2016;26(9):3034–45.CrossRefPubMedGoogle Scholar
  10. 10.
    MacKay JW, Murray PJ, Kasmai B, Johnson G, Donell ST, Toms AP. Subchondral bone in osteoarthritis: association between MRI texture analysis and histomorphometry. Osteoarthritis Cartilage. 2017;25(5):700–7.CrossRefPubMedGoogle Scholar
  11. 11.
    MacKay JW, Murray PJ, Low SB, Kasmai B, Johnson G, Donell ST, et al. Quantitative analysis of tibial subchondral bone: texture analysis outperforms conventional trabecular microarchitecture analysis. J Magn Reson Imaging. 2016;43(5):1159–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Schneider E, Lo GH, Sloane G, Fanella L, Hunter DJ, Eaton CB, et al. Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee. Skeletal Radiol. 2011;40(1):95–103.CrossRefPubMedGoogle Scholar
  13. 13.
    Phan CM, Macklin EA, Bredella MA, Dadrich M, Flechsig P, Yoo AJ, et al. Trabecular structure analysis using C-arm CT: comparison with MDCT and flat-panel volume CT. Skeletal Radiol. 2011;40(8):1065–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Frighetto-Pereira L, Rangayyan RM, Metzner GA, de Azevedo-Marques PM, Nogueira-Barbosa MH. Shape, texture and statistical features for classification of benign and malignant vertebral compression fractures in magnetic resonance images. Comput Biol Med. 2016;73:147–56.CrossRefPubMedGoogle Scholar
  15. 15.
    Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tabari A, Torriani M, Miller KK, Klibanski A, Kalra MK, Bredella MA. Anorexia nervosa: analysis of trabecular texture with CT. Radiology. 2017;283(1):178–85CrossRefPubMedGoogle Scholar
  17. 17.
    Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda—a software package for image texture analysis. Comput Methods Prog Biomed. 2009;94(1):66–76.CrossRefGoogle Scholar
  19. 19.
    Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22(1):81–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging. 2012;36(1):225–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Mahato NK. Trabecular bone structure in lumbosacral transitional vertebrae: distribution and densities across sagittal vertebral body segments. Spine J. 2013;13(8):932–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Raman SP, Chen Y, Schroeder JL, Huang P, Fishman EK. CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Radiol. 2014;21(12):1587–96.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Potdevin G, Malecki A, Biernath T, Bech M, Jensen TH, Feidenhans’l R, et al. X-ray vector radiography for bone micro-architecture diagnostics. Phys Med Biol. 2012;57(11):3451–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Leboeuf-Yde C, Nielsen J, Kyvik KO, Fejer R, Hartvigsen J. Pain in the lumbar, thoracic or cervical regions: do age and gender matter? A population-based study of 34,902 Danish twins 20-71 years of age. BMC Musculoskelet Disord. 2009;10:39.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yeni YN, Zinno MJ, Yerramshetty JS, Zauel R, Fyhrie DP. Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone. Bone. 2011;49(4):886–94.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Terashima Y, Yurube T, Hirata H, Sugiyama D, Sumi M, Hyogo Organization of Spinal Disorders. Predictive risk factors of cervical spine instabilities in rheumatoid arthritis: a prospective multicenter over 10-year cohort study. Spine. 2017; 42(8):556–64.Google Scholar

Copyright information

© ISS 2017

Authors and Affiliations

  • Manoj Mannil
    • 1
  • Matthias Eberhard
    • 1
  • Anton S. Becker
    • 1
  • Denise Schönenberg
    • 2
  • Georg Osterhoff
    • 2
  • Diana P. Frey
    • 4
  • Ender Konukoglu
    • 3
  • Hatem Alkadhi
    • 1
  • Roman Guggenberger
    • 1
    Email author
  1. 1.Institute of Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Division of Trauma SurgeryUniversity Hospital ZurichZurichSwitzerland
  3. 3.Department of Information Technology and Electrical EngineeringComputer Vision LaboratoryZurichSwitzerland
  4. 4.Department of RheumatologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations