Skeletal Radiology

, Volume 46, Issue 11, pp 1469–1475 | Cite as

Acute non-contact anterior cruciate ligament tears are associated with relatively increased vastus medialis to semimembranosus cross-sectional area ratio: a case-control retrospective MR study

  • Ged G. WieschhoffEmail author
  • Jacob C. Mandell
  • Gregory J. Czuczman
  • Violeta Nikac
  • Nehal Shah
  • Stacy E. Smith
Scientific Article



Hamstring muscle deficiency is increasingly recognized as a risk factor for anterior cruciate ligament (ACL) tears. The purpose of this study is to evaluate the vastus medialis to semimembranosus cross-sectional area (VM:SM CSA) ratio on magnetic resonance imaging (MRI) in patients with ACL tears compared to controls.

Materials and methods

One hundred knee MRIs of acute ACL tear patients and 100 age-, sex-, and side­matched controls were included. Mechanism of injury, contact versus non-contact, was determined for each ACL tear subject. The VM:SM CSA was measured on individual axial slices with a novel method using image-processing software. One reader measured all 200 knees and the second reader measured 50 knees at random to assess inter-reader variability. The intraclass correlation coefficient (ICC) was calculated to evaluate for correlation between readers. T-tests were performed to evaluate for differences in VM:SM CSA ratios between the ACL tear group and control group.


The ICC for agreement between the two readers was 0.991 (95% confidence interval 0.984–0.995). Acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.44 vs. 1.28; p = 0.005). Non-contact acute ACL tear patients have an increased VM:SM CSA ratio compared to controls (1.48 vs. 1.20; p = 0.003), whereas contact acute ACL tear patients do not (1.23 vs. 1.26; p = 0.762).


Acute non-contact ACL tears are associated with increased VM:SM CSA ratios, which may imply a relative deficiency in hamstring strength. This study also demonstrates a novel method of measuring the relative CSA of muscles on MRI.


Anterior cruciate ligament ACL Anterior cruciate ligament tear ACL tear Hamstring Quadriceps Vastus medialis Semimembranosus 


Compliance with ethical standards

Conflict of interest

The authors state that they have no conflicts of interest.


  1. 1.
    Utturkar GM, Irribarra LA, Taylor KA, Spritzer CE, Taylor DC, Garrett WE, et al. The effects of a valgus collapse knee position on in vivo ACL elongation. Ann Biomed Eng. 2013;41(1):123–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: A review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):1512–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Gottlob CA, Baker CL, Pellissier JM, Colvin L. Cost effectiveness of anterior cruciate ligament reconstruction in young adults. Clin Orthop Relat Res. 1999;367:272–82.CrossRefGoogle Scholar
  4. 4.
    Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: A 13-year review. Am J Sports Med. 2005;33(4):524–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Bjordal JM, Arnły F, Hannestad B, Strand T. Epidemiology of anterior cruciate ligament injuries in soccer. Am J Sports Med. 1997;25(3):341–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311.CrossRefPubMedGoogle Scholar
  8. 8.
    Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.CrossRefPubMedGoogle Scholar
  9. 9.
    Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8.PubMedGoogle Scholar
  10. 10.
    Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Lloyd DG, Buchanan TS, Besier TF. Neuromuscular biomechanical modeling to understand knee ligament loading. Med Sci Sports Exerc. 2005;37(11):1939–47.CrossRefPubMedGoogle Scholar
  12. 12.
    Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SLY. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech. 1999;32(4):395–400.CrossRefPubMedGoogle Scholar
  13. 13.
    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Jt Surg. 2008;90(4):815–23.CrossRefGoogle Scholar
  14. 14.
    Markolf KL, Oneill G, Jackson SR, Mcallister DR, Neill GO. Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. Am J Sports Med. 2004;32(5):1144–9.CrossRefPubMedGoogle Scholar
  15. 15.
    More RC, Karras BT, Neiman R, Fritschy D, Woo SL, Daniel DM. Hamstrings--an anterior cruciate ligament protagonist. An in vitro study. Am J Sports Med. 21(2):231–7.Google Scholar
  16. 16.
    Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):3–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Weinhandl JT, Earl-Boehm JE, Ebersole KT, Huddleston WE, Armstrong BSR, O’Connor KM. Reduced hamstring strength increases anterior cruciate ligament loading during anticipated sidestep cutting. Clin Biomech. 2014;29(7):752–9.CrossRefGoogle Scholar
  18. 18.
    Strandberg S, Wretling M-L, Wredmark T, Shalabi A. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med Imaging. 2010;10:18.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Meighan AAS, Keating JF, Will E. Outcome after reconstruction of the anterior cruciate ligament in athletic patients. A comparison of early versus delayed surgery. J Bone Joint Surg Br. 2003;85(4):521–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Smith TO, Davies L, Hing CB. Early versus delayed surgery for anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2010;18(3):304–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Raviraj A, Anand A, Kodikal G, Chandrashekar M, Pai S. A comparison of early and delayed arthroscopically-assisted reconstruction of the anterior cruciate ligament using hamstring autograft. J Bone Joint Surg Br. 2010;92(4):521–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med. 1991;19(4):332–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Strandberg S, Lindström M, Wretling M-L, Aspelin P, Shalabi A. Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: Aspects on using non-injured leg as control. BMC Musculoskelet Disord. 2013;14:150.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Marcon M, Ciritsis B, Laux C, Nanz D, Fischer M. A, Andreisek G, et al. quantitative and qualitative MR-imaging assessment of vastus medialis muscle volume loss in asymptomatic patients after anterior cruciate ligament reconstruction. J Magn Reson Imaging. 2015;42(2):515–25.CrossRefPubMedGoogle Scholar
  25. 25.
    Norte GE, Knaus KR, Kuenze C, Handsfield GG, Meyer CH, Blemker SS, et al. MRI-based assessment of lower extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil. 2017;32:1–40.Google Scholar
  26. 26.
    Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport. 2016;19(1):7–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Niinimäki S, Härkönen L, Nikander R, Abe S, Knüsel C, Sievänen H. The cross-sectional area of the gluteus maximus muscle varies according to habitual exercise loading: Implications for activity-related and evolutionary studies. Homo. 2016;67(2):125–37.CrossRefPubMedGoogle Scholar
  28. 28.
    Vidt ME, Santago AC, Tuohy CJ, Poehling GG, Freehill MT, Kraft RA, et al. Assessments of fatty infiltration and muscle atrophy from a single magnetic resonance image slice are not predictive of 3-dimensional measurements. Arthrosc - J Arthrosc Relat Surg. 2016;32(1):128–39.CrossRefGoogle Scholar
  29. 29.
    Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med. 2005;33(7):1003–10.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2017

Authors and Affiliations

  • Ged G. Wieschhoff
    • 1
    Email author
  • Jacob C. Mandell
    • 1
  • Gregory J. Czuczman
    • 1
  • Violeta Nikac
    • 1
  • Nehal Shah
    • 1
  • Stacy E. Smith
    • 1
  1. 1.Division of Musculoskeletal Imaging and Intervention, Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations