Advertisement

Skeletal Radiology

, Volume 46, Issue 9, pp 1209–1217 | Cite as

Comparative study of fat-suppression techniques for hip arthroplasty MR imaging

  • Sébastien Molière
  • Jean-Philippe Dillenseger
  • Matthieu Ehlinger
  • Stéphane Kremer
  • Guillaume BierryEmail author
Scientific Article
  • 662 Downloads

Abstract

Objectives

The goal of this study was to evaluate different fat-suppressed fluid-sensitive sequences in association with different metal artifacts reduction techniques (MARS) to determine which combination allows better fat suppression around metallic hip implants.

Methods

An experimental study using an MRI fat–water phantom quantitatively evaluated contrast shift induced by metallic hip implant for different fat-suppression techniques and MARS. Then a clinical study with patients addressed to MRI unit for painful hip prosthesis compared these techniques in terms of fat suppression quality and diagnosis confidence.

Results

Among sequences without MARS, both T2 Dixon and short tau inversion recuperation (STIR) had significantly lower contrast shift (p < 0.05), Dixon offering the best fat suppression. Adding MARS (view-angle tilting or slice-encoding for metal artifact correction (SEMAC)) to STIR gave better results than Dixon alone, and also better than SPAIR and fat saturation with MARS (p < 0.05). There were no statistically significant differences between STIR with view-angle tilting and STIR with SEMAC in terms of fat suppression quality.

Conclusions

STIR sequence is the preferred fluid-sensitive MR sequence in patients with metal implant. In combination with MARS (view-angle tilting or SEMAC), STIR appears to be the best option for high-quality fat suppression.

Keywords

MRI Hip Prosthesis Fat suppression Metal artifact reduction sequences 

Abbreviations

STIR

Short tau inversion recovery

SEMAC

Slice-encoding for metal artifact correction

SPAIR

Spectral attenuated inversion recovery

FS

(Spectrally selective) fat suppression

WE

Water excitation

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Pivec R, Johnson AJ, Mears SC, Mont MA. Hip arthroplasty. Lancet Lond Engl. 2012;380:1768–77.CrossRefGoogle Scholar
  2. 2.s
    Cushner F, Agnelli G, FitzGerald G, Warwick D. Complications and functional outcomes after total hip arthroplasty and total knee arthroplasty: results from the Global Orthopaedic Registry (GLORY). Am J Orthop Belle Mead NJ. 2010;39:22–8.PubMedGoogle Scholar
  3. 3.
    Koff MF, Shah P, Potter HG. Clinical implementation of MRI of joint arthroplasty. Am J Roentgenol. 2014;203:154–61.CrossRefGoogle Scholar
  4. 4.
    Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiogr. 2014;34:E106–32.CrossRefGoogle Scholar
  5. 5.
    Hargreaves BA, Worters PW, Pauly KB, et al. Metal-induced artifacts in MRI. Am J Roentgenol. 2011;197:547–55.CrossRefGoogle Scholar
  6. 6.
    Lüdeke KM, Röschmann P, Tischler R. Susceptibility artefacts in NMR imaging. Magn Reson Imaging. 1985;3:329–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Dillenseger JP, Molière S, Choquet P, et al. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skelet Radiol. 2016;45:677–88.CrossRefGoogle Scholar
  8. 8.
    Lee MJ, Janzen DL, Munk PL, et al. Quantitative assessment of an MR technique for reducing metal artifact: application to spin-echo imaging in a phantom. Skelet Radiol. 2001;30:398–401.CrossRefGoogle Scholar
  9. 9.
    Lu W, Pauly KB, Gold GE, et al. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009;62:66–76.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Del Grande F, Santini F, Herzka DA, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiogr. 2014;34:217–33.CrossRefGoogle Scholar
  11. 11.
    Eggers H, Börnert P. Chemical shift encoding-based water-fat separation methods. J Magn Reson Imaging. 2014;40:251–68.CrossRefPubMedGoogle Scholar
  12. 12.
    Bley TA, Wieben O, François CJ, Britain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging JMRI. 2010;31:4–18.CrossRefPubMedGoogle Scholar
  13. 13.
    Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Kolind SH, MacKay AL, Munk PL, et al. Quantitive evaluation of metal artifact reduction. J Magn Reson Imaging. 2004;20:487–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Jungmann PM, Ganter C, Schaeffeler CJ, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application. PLoS One. 2015;10:e0124922.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Choi S-J, Koch KM, Hargreaves BA, et al. Metal artifact reduction with MAVRIC SL at 3-T MRI in patients with hip arthroplasty. AJR Am J Roentgenol. 2015;204:140–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Talbot BS, Weinberg E. Imaging with metal-suppression sequences for evaluation of Total joint arthroplasty. Radiographics. 2016;36:1–17.CrossRefGoogle Scholar
  18. 18.
    Oppelt A (2011) Imaging systems for medical diagnostics: fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound. John Wiley & Sons (p.214).Google Scholar
  19. 19.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Briant-Evans TW, Lyle N, Barbur S, et al. A longitudinal study of MARS MRI scanning of soft-tissue lesions around metal-on-metal total hip arthroplasties and disease progression. Bone Jt J. 2015;97–B:1328–37.CrossRefGoogle Scholar
  21. 21.
    Yu H, Shimakawa A, McKenzie CA, et al. Multiecho water–fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122–34.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hess AT, Robson MD (2016) Hexagonal gradient scheme with RF spoiling improves spoiling performance for high-flip-angle fast gradient echo imaging. Magn Reson Med 0:1–7.Google Scholar
  23. 23.
    Hines CDG, Yu H, Shimakawa A, et al. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat–water-SPIO phantom. J Magn Reson Imaging JMRI. 2009;30:1215–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Le Y, Kipfer HD, Majidi SS, et al. Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo Dixon versus conventional fat-suppression techniques. Am J Roentgenol. 2014;203:W307–14.CrossRefGoogle Scholar
  25. 25.
    Zou Y, Chu B, Wang C, Hu Z. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws. Eur J Radiol. 2015;84:450–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Winfield JM, Douglas NHM, Desouza NM, Collins DJ. Phantom for assessment of fat suppression in large field-of-view diffusion-weighted magnetic resonance imaging. Phys Med Biol. 2014;59:2235–48.CrossRefPubMedGoogle Scholar
  27. 27.
    Ulbrich EJ, Sutter R, Aguiar RF, et al. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. Am J Roentgenol. 2012;199:W735–42.CrossRefGoogle Scholar
  28. 28.
    Ramnath RR. 3T MR imaging of the musculoskeletal system (part II): clinical applications. Magn Reson Imaging Clin N Am. 2006;14:41–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee M, Kim S, Song H, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–804.CrossRefPubMedGoogle Scholar
  30. 30.
    Shapiro L, Harish M, Hargreaves B, et al. Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging JMRI. 2012;36:775–87.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2017

Authors and Affiliations

  • Sébastien Molière
    • 1
  • Jean-Philippe Dillenseger
    • 1
    • 2
  • Matthieu Ehlinger
    • 2
    • 3
  • Stéphane Kremer
    • 1
    • 2
  • Guillaume Bierry
    • 1
    • 2
    Email author
  1. 1.Imaging DepartmentUniversity Hospital of StrasbourgStrasbourgFrance
  2. 2.ICube UMR 7357, University of StrasbourgStrasbourgFrance
  3. 3.Orthopaedic DepartmentUniversity Hospital of StrasbourgStrasbourgFrance

Personalised recommendations