Skeletal Radiology

, Volume 45, Issue 9, pp 1249–1256 | Cite as

Evaluation of the disco-vertebral junction using ultrashort time-to-echo magnetic resonance imaging: inter-reader agreement and association with vertebral endplate lesions

  • Karen C. Chen
  • Betty Tran
  • Reni Biswas
  • Sheronda Statum
  • Koichi Masuda
  • Christine B. Chung
  • Won C. BaeEmail author
Scientific Article



To evaluate ultrashort time to echo (UTE) magnetic resonance (MR) morphology of the cartilaginous endplates (CEP) in cadaveric lumbar spines with bony vertebral endplate (VEP) lesions, to determine inter-reader agreement as well as associations between the CEP morphology and VEP lesions as well as other abnormalities.

Materials and methods

MR imaging of cadaveric lumbar spines from 10 donors was performed at 3T using a UTE MR sequence. Two musculoskeletal radiologists identified the location of vertebral endplate lesions in consensus. The morphology of the CEP overlying the lesions and in the adjacent normal regions was assessed individually. A total of 55 vertebral lesions and 55 normal regions were assessed. The presence of osteophytosis, morphological changes of the anterior and posterior longitudinal ligament, and intervertebral disc signal and morphology was also assessed. Agreement between observers was determined using Cohen’s kappa analysis, and association between CEP and vertebral endplate lesions was determined using the chi square test.


Fifty-five vertebral endplate lesions were identified and the morphology of CEP evaluated by two readers was in substantial agreement with Cohen’s kappa of 0.78. The presence of vertebral endplate abnormality was associated with the presence of osteophytes (39 out of 55 levels), altered morphology and signal of the anterior longitudinal ligament (23 out of 55 levels) and intervertebral discs (30 out of 55 levels).


UTE MRI enables evaluation of the CEP with substantial inter-reader agreement. Abnormal changes of the CEP may facilitate formation of lesions of vertebral endplate over time and are associated with degenerative changes of the lumbar spine.


Schmorl’s node Disc degeneration Lumbar spine Osteophyte Back pain 



Authors would like to thank Todd Griffith (LifeSharing, San Diego, CA) and Scott Barton (University of California, San Diego, Anatomic Services) for their assistance with cadaveric specimens.

Compliance with ethical standards

Grant support

This article was made possible in part by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health in support of Dr. Won C. Bae (Grant Number R01 AR066622), and Award Number 5I01CX000625 (Project ID: 1161961) from the Clinical Science Research & Development of the VA Office of Research and Development in support of Dr. Christine B. Chung. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or Veterans Affairs.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Freburger JK, Holmes GM, Agans RP, et al. The rising prevalence of chronic low back pain. Arch Intern Med. 2009;169(3):251–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R. Lost productive time and cost due to common pain conditions in the US workforce. JAMA. 2003;290(18):2443–54.CrossRefPubMedGoogle Scholar
  3. 3.
    van Dieen JH, Weinans H, Toussaint HM. Fractures of the lumbar vertebral endplate in the etiology of low back pain: a hypothesis on the causative role of spinal compression in aspecific low back pain. Med Hypotheses. 1999;53(3):246–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Fagan A, Moore R, Vernon Roberts B, Blumbergs P, Fraser R. ISSLS prize winner: the innervation of the intervertebral disc: a quantitative analysis. Spine (Phila Pa 1976). 2003;28(23):2570–6.CrossRefGoogle Scholar
  5. 5.
    Moore RJ. The vertebral end-plate: what do we know? Eur Spine J. 2000;9(2):92–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Crock HV, Goldwasser M. Anatomic studies of the circulation in the region of the vertebral end-plate in adult Greyhound dogs. Spine (Phila Pa 1976). 1984;9(7):702–6.CrossRefGoogle Scholar
  7. 7.
    Lee SW, Mathie AG, Jackson JE, Hughes SP. Investigation of vertebral “end plate sclerosis”. Skeletal Radiol. 2001;30(8):454–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Chan KK, Sartoris DJ, Haghighi P, et al. Cupid’s bow contour of the vertebral body: evaluation of pathogenesis with bone densitometry and imaging-histopathologic correlation. Radiology. 1997;202(1):253–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Solgaard Sorensen J, Kjaer P, Jensen ST, Andersen P. Low-field magnetic resonance imaging of the lumbar spine: reliability of qualitative evaluation of disc and muscle parameters. Acta Radiol. 2006;47(9):947–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Pfirrmann CW, Resnick D. Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology. 2001;219(2):368–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Jensen TS, Sorensen JS, Kjaer P. Intra- and interobserver reproducibility of vertebral endplate signal (modic) changes in the lumbar spine: the Nordic Modic Consensus Group classification. Acta Radiol. 2007;48(7):748–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Abu-Ghanem S, Ohana N, Abu-Ghanem Y, Kittani M, Shelef I. Acute Schmorl node in dorsal spine: an unusual cause of a sudden onset of severe back pain in a young female. Asian Spine J. 2013;7(2):131–5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Peng B, Wu W, Hou S, Shang W, Wang X, Yang Y. The pathogenesis of Schmorl’s nodes. J Bone Joint Surg (Br). 2003;85(6):879–82.Google Scholar
  14. 14.
    Hamanishi C, Kawabata T, Yosii T, Tanaka S. Schmorl’s nodes on magnetic resonance imaging: their incidence and clinical relevance. Spine (Phila Pa 1976). 1994;19(4):450–3.CrossRefGoogle Scholar
  15. 15.
    Stabler A, Bellan M, Weiss M, Gartner C, Brossmann J, Reiser MF. MR imaging of enhancing intraosseous disk herniation (Schmorl’s nodes). AJR Am J Roentgenol. 1997;168(4):933–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Y, Videman T, Battie MC. ISSLS prize winner: lumbar vertebral endplate lesions—associations with disc degeneration and back pain history. Spine (Phila Pa 1976). 2012;37(17):1490–6.CrossRefGoogle Scholar
  17. 17.
    Antonacci MD, Mody DR, Rutz K, Weilbaecher D, Heggeness MH. A histologic study of fractured human vertebral bodies. J Spinal Disord Tech. 2002;15(2):118–26.CrossRefPubMedGoogle Scholar
  18. 18.
    Bernick S, Cailliet R. Vertebral end-plate changes with aging of human vertebrae. Spine (Phila Pa 1976). 1982;7(2):97–102.CrossRefGoogle Scholar
  19. 19.
    Begg AC. Nuclear herniations of the intervertebral disc: their radiological manifestations and significance. J Bone Joint Surg (Br). 1954;36-B(2):180–93.Google Scholar
  20. 20.
    Hansson T, Roos B. The amount of bone mineral and Schmorl’s nodes in lumbar vertebrae. Spine (Phila Pa 1976). 1983;8(3):266–71.CrossRefGoogle Scholar
  21. 21.
    Silva MJ, Wang C, Keaveny TM, Hayes WC. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone. 1994;15(4):409–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Chung CB, Vande Berg BC, Tavernier T, et al. End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes. Skeletal Radiol. 2004;33(7):399–404.CrossRefPubMedGoogle Scholar
  23. 23.
    Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed. 2013;26(5):489–506.CrossRefPubMedGoogle Scholar
  24. 24.
    Bae WC, Biswas R, Chen K, Chang EY, Chung CB. UTE MRI of the osteochondral junction. Curr Radiol Rep. 2014;2(2):35.CrossRefPubMedGoogle Scholar
  25. 25.
    Bae WC, Statum S, Zhang Z, et al. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology. 2013;266(2):564–74.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK. Lumbar disc nomenclature: version 2.0: recommendations of the combined task forces of the North American Spine Society, the American Society Of Spine Radiology and the American Society Of Neuroradiology. Spine J. 2014;14(11):2525–45.CrossRefPubMedGoogle Scholar
  27. 27.
    Fardon DF, Milette PC. Nomenclature and classification of lumbar disc pathology: recommendations of the Combined task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine (Phila Pa 1976). 2001;26(5):E93–E113.CrossRefGoogle Scholar
  28. 28.
    Paajanen H, Alanen A, Erkintalo M, Salminen JJ, Katevuo K. Disc degeneration in Scheuermann disease. Skeletal Radiol. 1989;18(7):523–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Resnick D, Niwayama G. Intravertebral disk herniations: cartilaginous (Schmorl’s) nodes. Radiology. 1978;126(1):57–65.CrossRefPubMedGoogle Scholar
  30. 30.
    Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;XX(1).Google Scholar
  31. 31.
    Yates F. Contingency tables involving small numbers and the χ2 test. Suppl J R Stat Soc. 1934;1:217–35.CrossRefGoogle Scholar
  32. 32.
    Hilton RC, Ball J, Benn RT. Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis. 1976;35(2):127–32.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Noailly J, Lacroix D, Planell JA. Finite element study of a novel intervertebral disc substitute. Spine (Phila Pa 1976). 2005;30(20):2257–64.CrossRefGoogle Scholar
  34. 34.
    Bae WC, Xu K, Inoue N, Bydder GM, Chung CB, Masuda K. Ultrashort time-to-echo MRI of human intervertebral disc endplate: association with endplate calcification. Proc Int Soc Magn Reson Med. 2010;18:3218.Google Scholar
  35. 35.
    Calvo E, Palacios I, Delgado E, et al. Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthritis Cartilage. 2004;12(11):878–86.CrossRefPubMedGoogle Scholar
  36. 36.
    Le Graverand MP, Buck RJ, Wyman BT, et al. Change in regional cartilage morphology and joint space width in osteoarthritis participants versus healthy controls: a multicentre study using 3.0 Tesla MRI and Lyon-Schuss radiography. Ann Rheum Dis. 2010;69(1):155–62.CrossRefPubMedGoogle Scholar
  37. 37.
    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.CrossRefGoogle Scholar
  38. 38.
    Bae WC, Karunanithi PS, Znamirowski R, Statum S, Du J, Chung CB. Ultrashort time-to-echo MRI of cartilaginous endplates of human lumbar spines in vivo: a feasibility study. Radiol Soc N Am. 2013;99:SSQ13-05.Google Scholar
  39. 39.
    Hall-Craggs MA, Porter J, Gatehouse PD, Bydder GM. Ultrashort echo time (UTE) MRI of the spine in thalassaemia. Br J Radiol. 2004;77(914):104–10.CrossRefPubMedGoogle Scholar
  40. 40.
    Law T, Anthony MP, Chan Q, et al. Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration. J Med Imaging Radiat Oncol. 2013;57(4):427–34.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2016

Authors and Affiliations

  • Karen C. Chen
    • 1
  • Betty Tran
    • 1
    • 2
  • Reni Biswas
    • 1
    • 2
  • Sheronda Statum
    • 1
    • 2
  • Koichi Masuda
    • 3
  • Christine B. Chung
    • 1
    • 2
  • Won C. Bae
    • 1
    • 2
    Email author
  1. 1.Radiology ServiceVA San Diego Healthcare SystemSan DiegoUSA
  2. 2.Department of RadiologyUniversity of California, San DiegoSan DiegoUSA
  3. 3.Department of Orthopaedic SurgeryUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations