Advertisement

Skeletal Radiology

, Volume 44, Issue 11, pp 1655–1662 | Cite as

Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the osteoarthritis initiative

  • Nima Hafezi-Nejad
  • Bashir Zikria
  • John Eng
  • John A. Carrino
  • Shadpour DemehriEmail author
Scientific Article

Abstract

Purpose

To evaluate, in a confirmatory fashion, whether baseline and change from baseline to 24-month follow-up in cartilage damage, bone marrow lesions and meniscal damage are predictors of knee replacement (KR) in subjects with a high risk of osteoarthritis (OA), independent of the level of physical activity, symptom severity and radiographic abnormalities.

Methods

Data from the Osteoarthritis Initiative’s (OAI) baseline and 24-month follow-up knee MRIs of 115 patients (age range: 45–78 years; 48 % female; BMI: 20.9–48.7) were analyzed. Cartilage, bone marrow and menisci were semi-quantitatively scored according to the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and Boston-Leeds Osteoarthritis Knee Score (BLOKS) systems in all compartments. Baseline and 24-month interval changes in structural tissue damage assessed by BLOKS and WORMS were used as predictors of KR independent of clinical and radiographic parameters using Cox hazard analysis. Adjustments were performed for age, gender, BMI and physical activity (Physical Activity Scale for the Elderly: PASE), Western Ontario and McMaster Questionnaire (WOMAC) total score and radiographic Kellgren-Lawrence (KL) score.

Results

BLOKS and WORMS baseline cartilage scores were predictors of KR independent of the PASE, WOMAC and KL score. One score increase in the average baseline BLOKS full-thickness cartilage defect score was associated with a [hazard ratio (95 % CI)] 13.55 (3.61–50.89) times greater risk of KR independent of the PASE, WOMAC and KL score. Net reclassification improvements (NRIs) of the additional evaluation of 24-month follow-up MRI scores and assessment of changes were not significant for prediction of KR (NRI range: − 7.23 – 24.8 %).

Conclusions

The BLOKS cartilage score for full-thickness cartilage defects had the highest hazard for KR. Follow-up MRI changes in structural tissue damage, detected by BLOKS and WORMS cartilage, bone marrow or meniscus scores (up to 24 months) had no significant predictive value in addition to the baseline MRI.

Keywords

Osteoarthritis MRI Outcome prediction Net Reclassification improvement (NRI) Knee replacement 

Notes

Acknowledgments

The OAI is a public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories, Novartis Pharmaceuticals Corp., GlaxoSmithKline and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, NIH or private funding partners.

Conflicts of interest

Nima Hafezi-Nejad, Bashir Zikria and John Eng have no conflicts of interest. John A. Carrino has grants from the Society for Imaging Informatics in Medicine, Siemens Medical Systems, Carestream Health and Toshiba; fees from BestDoctors, BioClinica, Pfizer, Siemens Medical Systems, GE Healthcare and Medtronic; nonfinancial support from Siemens Medical Systems, GE Healthcare and Care-stream Health. Shadpour Demehri has grants from GERRAF 2014–2016; Carestream Health Inc. 2013–2015 for the Cone-Beam CT clinical trial; Toshiba Medical Systems as a consultant.

References

  1. 1.
    Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Lohmander LS, Roos EM. Clinical update: treating osteoarthritis. Lancet. 2007;370(9605):2082–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365(9463):965–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Doherty M. Risk factors for progression of knee osteoarthritis. Lancet. 2001;358(9284):775–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Raynauld JP, Martel-Pelletier J, Haraoui B, Choquette D, Dorais M, Wildi LM, et al. Risk factors predictive of joint replacement in a 2-year multicentre clinical trial in knee osteoarthritis using MRI: results from over 6 years of observation. Ann Rheum Dis. 2011;70(8):1382–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Pelletier JP, Cooper C, Peterfy C, Reginster JY, Brandi ML, Bruyere O, et al. What is the predictive value of MRI for the occurrence of knee replacement surgery in knee osteoarthritis? Ann Rheum Dis. 2013;72(10):1594–604.CrossRefPubMedGoogle Scholar
  7. 7.
    Kerkhof HJ, Bierma-Zeinstra SM, Arden NK, Metrustry S, Castano-Betancourt M, Hart DJ, et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann Rheum Dis. 2014;73(12):2116–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Riddle DL, Kong X, Jiranek WA. Factors associated with rapid progression to knee arthroplasty: complete analysis of 3-year data from the osteoarthritis initiative. Joint Bone Spine. 2012;79(3):298–303.CrossRefPubMedGoogle Scholar
  9. 9.
    Zeni Jr JA, Axe MJ, Snyder-Mackler L. Clinical predictors of elective total joint replacement in persons with end-stage knee osteoarthritis. BMC Musculoskelet Disord. 2010;11:86.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Riddle DL, Kong X, Jiranek WA. Two-year incidence and predictors of future knee arthroplasty in persons with symptomatic knee osteoarthritis: preliminary analysis of longitudinal data from the osteoarthritis initiative. Knee. 2009;16(6):494–500.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Roemer FW, Nevitt MC, Felson DT, Niu J, Lynch JA, Crema MD, et al. Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral joint--the MOST study. Osteoarthritis Cartil. 2012;20(11):1391–8.CrossRefGoogle Scholar
  12. 12.
    Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman BN, Aliabadi P, et al. The incidence and natural history of knee osteoarthritis in the elderly. Framingham Osteoarthritis Study Arthritis Rheum. 1995;38(10):1500–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Schneider E, NessAiver M, White D, Purdy D, Martin L, Fanella L, et al. The osteoarthritis initiative (OAI) magnetic resonance imaging quality assurance methods and results. Osteoarthritis Cartil. 2008;16(9):994–1004.CrossRefGoogle Scholar
  14. 14.
    Guermazi A, Zaim S, Taouli B, Miaux Y, Peterfy CG, Genant HG. MR findings in knee osteoarthritis. Eur Radiol. 2003;13(6):1370–86.PubMedGoogle Scholar
  15. 15.
    Huang M, Schweitzer ME. The role of radiology in the evolution of the understanding of articular disease. Radiology. 2014;273(2 Suppl):S1–S22.CrossRefPubMedGoogle Scholar
  16. 16.
    Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartil. 2004;12(3):177–90.CrossRefGoogle Scholar
  18. 18.
    Felson DT, Lynch J, Guermazi A, Roemer FW, Niu J, McAlindon T, et al. Comparison of BLOKS and WORMS scoring systems part II. Longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance: data from the Osteoarthritis Initiative. Osteoarthritis Cartil. 2010;18(11):1402–7.CrossRefGoogle Scholar
  19. 19.
    Lynch JA, Roemer FW, Nevitt MC, Felson DT, Niu J, Eaton CB, et al. Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: data from the osteoarthritis initiative. Osteoarthritis Cartil. 2010;18(11):1393–401.CrossRefGoogle Scholar
  20. 20.
    Roemer FW, Kwoh CK, Hannon MJ, Hunter DJ, Eckstein F, Wang Z, et al. Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology. 2014:140991.Google Scholar
  21. 21.
    Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartil. 2010;18(6):776–86.CrossRefGoogle Scholar
  22. 22.
    Zhang W, McWilliams DF, Ingham SL, Doherty SA, Muthuri S, Muir KR, et al. Nottingham knee osteoarthritis risk prediction models. Ann Rheum Dis. 2011;70(9):1599–604.CrossRefPubMedGoogle Scholar
  23. 23.
    Roos EM, Toksvig-Larsen S. Knee injury and Osteoarthritis Outcome Score (KOOS)—validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes. 2003;1:17.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Felson DT, Niu J, Yang T, Torner J, Lewis CE, Aliabadi P, et al. Physical activity, alignment and knee osteoarthritis: data from MOST and the OAI. Osteoarthritis Cartil. 2013;21(6):789–95.CrossRefGoogle Scholar
  25. 25.
    Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165(6):710–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Pencina MJ, D’Agostino RB, Pencina KM, Janssens AC, Greenland P. Interpreting incremental value of markers added to risk prediction models. Am J Epidemiol. 2012;176(6):473–81.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Pencina MJ, D’Agostino Sr RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11–21.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Steyerberg EW, Van Calster B, Pencina MJ. Performance measures for prediction models and markers: evaluation of predictions and classifications. Rev Esp Cardiol. 2011;64(9):788–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Pencina MJ, D’Agostino Sr RB, D’Agostino Jr RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72. discussion 207–112.CrossRefPubMedGoogle Scholar
  30. 30.
    Spruance SL, Reid JE, Grace M, Samore M. Hazard ratio in clinical trials. Antimicrob Agents Chemother. 2004;48(8):2787–92.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Wluka AE, Ding C, Jones G, Cicuttini FM. The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study. Rheumatology (Oxford). 2005;44(10):1311–6.CrossRefGoogle Scholar
  32. 32.
    Scher C, Craig J, Nelson F. Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a 3-year follow-up. Skeletal Radiol. 2008;37(7):609–17.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Eckstein F, Kwoh CK, Boudreau RM, Wang Z, Hannon MJ, Cotofana S, et al. Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative. Ann Rheum Dis. 2013;72(5):707–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Tanamas SK, Wluka AE, Pelletier JP, Martel-Pelletier J, Abram F, Wang Y, et al. The association between subchondral bone cysts and tibial cartilage volume and risk of joint replacement in people with knee osteoarthritis: a longitudinal study. Arthritis Res Ther. 2010;12(2):R58.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Tanamas SK, Wluka AE, Pelletier JP, Pelletier JM, Abram F, Berry PA, et al. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxford). 2010;49(12):2413–9.CrossRefGoogle Scholar
  36. 36.
    Dore D, Quinn S, Ding C, Winzenberg T, Zhai G, Cicuttini F, et al. Natural history and clinical significance of MRI-detected bone marrow lesions at the knee: a prospective study in community dwelling older adults. Arthritis Res Ther. 2010;12(6):R223.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124–7.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© ISS 2015

Authors and Affiliations

  • Nima Hafezi-Nejad
    • 1
  • Bashir Zikria
    • 2
  • John Eng
    • 1
  • John A. Carrino
    • 3
  • Shadpour Demehri
    • 1
    Email author
  1. 1.Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Orthopedic SurgeryJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Radiology and ImagingHospital for Special SurgeryNew YorkUSA

Personalised recommendations