Advertisement

Skeletal Radiology

, Volume 44, Issue 7, pp 941–951 | Cite as

Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings

  • Andrea Lazik
  • Stefan Landgraeber
  • Patrick Schulte
  • Oliver Kraff
  • Thomas C. Lauenstein
  • Jens M. Theysohn
Scientific Article

Abstract

Objective

To evaluate the usefulness of the metal artifact reduction technique “WARP” in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed.

Materials and methods

Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction.

Results

At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation.

Conclusion

WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality.

Keywords

Hip Artifacts Metal-on-metal joint prostheses Magnetic resonance imaging View angle tilting WARP 

References

  1. 1.
    Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. J Magn Reson Imaging. 2010;32:773–87.CrossRefPubMedGoogle Scholar
  2. 2.
    Eustace S, Goldberg R, Williamson D, et al. MR imaging of soft tissues adjacent to orthopaedic hardware: techniques to minimize susceptibility artefact. Clin Radiol. 1997;52:589–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys. 1988;15:7–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Olsen RV, Munk PL, Lee MJ, et al. Metal artifact reduction sequence: early clinical applications. Radiographics. 2000;20:699–712.CrossRefPubMedGoogle Scholar
  5. 5.
    Kolind SH, MacKay AL, Munk PL, Xiang QS. Quantitative evaluation of metal artifact reduction techniques. J Magn Reson Imaging. 2004;20:487–95.CrossRefPubMedGoogle Scholar
  6. 6.
    Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology. 2012;265:204–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Rahman L, Hall-Craggs M, Muirhead-Allwood SK. Radiology of the resurfaced hip. Skelet Radiol. 2011;40:819–30.CrossRefGoogle Scholar
  8. 8.
    Hartmann A, Hannemann F, Lutzner J, et al. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing–systematic review of clinical and epidemiological studies. PLoS ONE. 2013;8:e70359.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Williams DH, Greidanus NV, Masri BA, Duncan CP, Garbuz DS. Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg Am. 2011;93:2164–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Campbell P, Ebramzadeh E, Nelson S, Takamura K, De Smet K, Amstutz HC. Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res. 2010;468:2321–7.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Duggan PJ, Burke CJ, Saha S, et al. Current literature and imaging techniques of aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL). Clin Radiol. 2013;68:1089–96.CrossRefPubMedGoogle Scholar
  12. 12.
    Fehring TK, Odum S, Sproul R, Weathersbee J. High frequency of adverse local tissue reactions in asymptomatic patients with metal-on-metal THA. Clin Orthop Relat Res. 2014;472:517–22.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Langton DJ, Joyce TJ, Jameson SS, et al. Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg (Br). 2011;93:164–71.CrossRefGoogle Scholar
  14. 14.
    Jameson SS, Baker PN, Mason J, Porter ML, Deehan DJ, Reed MR. Independent predictors of revision following metal-on-metal hip resurfacing: a retrospective cohort study using National Joint Registry data. J Bone Joint Surg (Br). 2012;94:746–54.CrossRefGoogle Scholar
  15. 15.
    Cohen D. How safe are metal-on-metal implants? BMJ. 2012;344.Google Scholar
  16. 16.
    Bestic JM, Berquist TH. Current concepts in hip arthroplasty imaging: metal-on-metal prostheses, their complications, and imaging strategies. Semin Roentgenol. 2013;48:178–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Hart A. MRI investigations in patients with problems due to metal-on-metal implants. Orthopade. 2013;42:629–36.CrossRefPubMedGoogle Scholar
  18. 18.
    Ostlere S. How to image metal-on-metal prostheses and their complications. AJR Am J Roentgenol. 2011;197:558–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Matthies AK, Skinner JA, Osmani H, Henckel J, Hart AJ. Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res. 2012;470:1895–906.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.CrossRefPubMedGoogle Scholar
  21. 21.
    Chang SD, Lee MJ, Munk PL, Janzen DL, MacKay A, Xiang QS. MRI of spinal hardware: comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence. Skelet Radiol. 2001;30:213–8.CrossRefGoogle Scholar
  22. 22.
    Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.CrossRefPubMedGoogle Scholar
  23. 23.
    Matsuura H, Inoue T, Ogasawara K, et al. Quantitative analysis of magnetic resonance imaging susceptibility artifacts caused by neurosurgical biomaterials: comparison of 0.5, 1.5, and 3.0 Tesla magnetic fields. Neurol Med Chir (Tokyo). 2005;45:395–8. discussion 398–399.CrossRefGoogle Scholar
  24. 24.
    Olsrud J, Latt J, Brockstedt S, Romner B, Bjorkman-Burtscher IM. Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: dependence on field strength (1.5 and 3 T) and imaging parameters. J Magn Reson Imaging. 2005;22:433–7.Google Scholar
  25. 25.
    Garbuz DS, Hargreaves BA, Duncan CP, Masri BA, Wilson DR, Forster BB. The John Charnley Award: diagnostic accuracy of MRI versus ultrasound for detecting pseudotumors in asymptomatic metal-on-metal THA. Clin Orthop Relat Res. 2014;472:417–23.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med. 2009;62:66–76.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Ai T, Padua A, Goerner F, et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5 T magnetic resonance imaging. Invest Radiol. 2012;47:267–76.Google Scholar
  28. 28.
    Jungmann PM, Ganter C, Pohlig F, et al. View-Angle Tilting (VAT) und Slice-encoding Metal Artifact Correction (SEMAC) zur MR Bildgebung orthopädischer Tumor-Prothesen. Fortschr Röntgenstr. 2013;185:VO104–105.Google Scholar
  29. 29.
    Reichert M, Ai T, Nittka M, et al. Möglichkeiten zur Metallartefaktreduktion im MRT bei 1.5 Tesla als auch 3 Tesla unter Verwendung innovativer SequenztechnikenDeutscher Röntgenkonkress. Hamburg: Thieme; 2012. p. VO409–405.Google Scholar
  30. 30.
    Hargreaves BA, Chen W, Lu W, et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging. 2010;31:987–96.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© ISS 2015

Authors and Affiliations

  • Andrea Lazik
    • 1
  • Stefan Landgraeber
    • 2
  • Patrick Schulte
    • 2
  • Oliver Kraff
    • 3
  • Thomas C. Lauenstein
    • 1
  • Jens M. Theysohn
    • 1
  1. 1.Department of Diagnostic and Interventional Radiology and NeuroradiologyUniversity Hospital EssenEssenGermany
  2. 2.Department of OrthopedicsUniversity Hospital EssenEssenGermany
  3. 3.Erwin L. Hahn Institute for Magnetic Resonance ImagingUniversity of Duisburg-EssenEssenGermany

Personalised recommendations