Skeletal Radiology

, Volume 44, Issue 6, pp 797–809 | Cite as

Using cone-beam CT as a low-dose 3D imaging technique for the extremities: initial experience in 50 subjects

  • Ambrose J. HuangEmail author
  • Connie Y. Chang
  • Bijoy J. Thomas
  • Peter J. MacMahon
  • William E. Palmer
Scientific Article



To prospectively evaluate a dedicated extremity cone-beam CT (CBCT) scanner in cases with and without orthopedic hardware by (1) comparing its imaging duration and image quality to those of radiography and multidetector CT (MDCT) and (2) comparing its radiation dose to that of MDCT.

Materials and methods

Written informed consent was obtained for all subjects for this IRB-approved, HIPAA-compliant study. Fifty subjects with (1) fracture of small bones, (2) suspected intraarticular fracture, (3) fracture at the site of complex anatomy, or (4) a surgical site difficult to assess with radiography alone were recruited and scanned on an extremity CBCT scanner prior to FDA approval. Same-day radiographs were performed in all subjects. Some subjects also underwent MDCT within 1 month of CBCT. Imaging duration and image quality were compared between CBCT and radiographs. Imaging duration, effective radiation dose, and image quality were compared between CBCT and MDCT.


Fifty-one CBCT scans were performed in 50 subjects. Average imaging duration was shorter for CBCT than radiographs (4.5 min vs. 6.6 min, P = 0.001, n = 51) and MDCT (7.6 min vs. 10.9 min, P = 0.01, n = 7). Average estimated effective radiation dose was less for CBCT than MDCT (0.04 mSv vs. 0.13 mSv, P = 0.02, n = 7). CBCT images yielded more diagnostic information than radiographs in 23/51 cases and more diagnostic information than MDCT in 1/7 cases, although radiographs were superior for detecting hardware complications.


CBCT performs high-resolution imaging of the extremities using less imaging time than radiographs and MDCT and lower radiation dose than MDCT.


Computed tomography Cone-beam computed tomography Radiation dose Fracture Hardware Artifact 



The authors would like to thank Marie Verlicco and Patricia Giorgio, registered radiologic technologists, for undergoing training in the operation of the Verity CBCT scanner and for recruiting subjects for the study.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558–64.CrossRefPubMedGoogle Scholar
  2. 2.
    De Cock J, Mermuys K, Goubau J, Van Petegem S, Houthoofd B, Casselman JW. Cone-beam computed tomography: a new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skeletal Radiol. 2012;41:93–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Kapila S, Conley RS, Harrell Jr WE. The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol. 2011;40:24–34.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Jung Y-H, Cho B-H. Assessment of the relationship between the maxillary molars and adjacent structures using cone beam computed tomography. Imaging Sci Dent. 2012;42:219–24.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol. 2009;30:1285–92.CrossRefPubMedGoogle Scholar
  6. 6.
    De Vos W, Casselman J, Swennen GRJ. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2009;38:609–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig. 2006;10:1–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Okano T, Harata Y, Sugihara Y, Sakaino R, Tsuchida R, Iwai K, et al. Absorbed and effective doses from cone beam volumetric imaging for implant planning. Dento-Maxillo-Facial Radiol. 2009;38:79–85.CrossRefGoogle Scholar
  9. 9.
    Gracco A, Incerti Parenti S, Ioele C, Alessandri Bonetti G, Stellini E. Prevalence of incidental maxillary sinus findings in Italian orthodontic patients: a retrospective cone-beam computed tomography study. Korean J Orthod. 2012;42:329–34.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW. Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol. 2009;30:299–303.CrossRefPubMedGoogle Scholar
  11. 11.
    Faccioli N, Barillari M, Guariglia S, Zivelonghi E, Rizzotti A, Cerini R, et al. Radiation dose saving through the use of cone-beam CT in hearing-impaired patients. Radiol Med. 2009;114:1308–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Vu T, Bayome M, Kook Y-A, Han SH. Evaluation of the palatal soft tissue thickness by cone-beam computed tomography. Korean J Orthod. 2012;42:291–6.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    de Souza KRS, Oltramari-Navarro PVP, de Lima Navarro R, de Castro Ferreira Conti AC, de Almeida MR. Reliability of a method to conduct upper airway analysis in cone-beam computed tomography. Braz Oral Res. 2013;27:48–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Faccioli N, Foti G, Barillari M, Atzei A, Mucelli RP. Finger fractures imaging: accuracy of cone-beam computed tomography and multislice computed tomography. Skeletal Radiol. 2010;39:1087–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Koskinen SK, Haapamäki VV, Salo J, Lindfors NC, Kortesniemi M, Seppälä L, et al. CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT). Skeletal Radiol. 2013;42:649–57.CrossRefPubMedGoogle Scholar
  16. 16.
    Kröpil P, Hakimi AR, Jungbluth P, Riegger C, Rubbert C, Miese F, et al. Cone beam CT in assessment of tibial bone defect healing: an animal study. Acad Radiol. 2012;19:320–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Tuominen EKJ, Kankare J, Koskinen SK, Mattila KT. Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol. 2013;200:146–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Hirschmann A, Pfirrmann CWA, Klammer G, Espinosa N, Buck FM. Upright Cone CT of the hindfoot: Comparison of the non-weight-bearing with the upright weight-bearing position. Eur Radiol. 2013.Google Scholar
  19. 19.
    Carrino JA, Al Muhit A, Zbijewski W, Thawait GK, Stayman JW, Packard N, et al. Dedicated cone-beam CT system for extremity imaging. Radiology. 2014;270:816–24.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Joemai RMS, Zweers D, Obermann WR, Geleijns J. Assessment of patient and occupational dose in established and new applications of MDCT fluoroscopy. AJR Am J Roentgenol. 2009;192:881–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Finkenstaedt T, Morsbach F, Calcagni M, Vich M, Pfirrmann CWA, Alkadhi H, et al. Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography. Invest Radiol. 2014;49:532–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Sprawls P. AAPM tutorial. CT image detail and noise. RadioGraphics. 1992;12:1041–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Blokhuis TJ, de Bruine JH, Bramer JA, den Boer FC, Bakker FC, Patka P, et al. The reliability of plain radiography in experimental fracture healing. Skeletal Radiol. 2001;30:151–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Panjabi MM, Lindsey RW, Walter SD, White AA. The clinician’s ability to evaluate the strength of healing fractures from plain radiographs. J Orthop Trauma. 1989;3:29–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Schnarkowski P, Rédei J, Peterfy CG, Weidenmaier W, Mutschler W, Arand M, et al. Tibial shaft fractures: assessment of fracture healing with computed tomography. J Comput Assist Tomogr. 1995;19:777–81.CrossRefPubMedGoogle Scholar
  26. 26.
    Holberg C, Steinhäuser S, Geis P, Rudzki-Janson I. Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop. 2005;66:434–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Huda W, Gkanatsios N. Radiation dosimetry for extremity radiographs. Health Phys. 1998;75:492–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Koivisto J, Kiljunen T, Wolff J, Kortesniemi M. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters. Radiat Prot Dosimetry. 2013;157:515–24.CrossRefPubMedGoogle Scholar
  29. 29.
    United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation, Vol. 1: Sources, vol. 1. New York: United Nations Publishing; 2000.Google Scholar
  30. 30.
    Coppenrath E, Draenert F, Lechel U, Veit R, Meindl T, Reiser M. et al [Cross-sectional imaging in dentomaxillofacial diagnostics: dose comparison of dental MSCT and NewTom 9000 DVT]. Röfo. 2008;180:396–401.PubMedGoogle Scholar
  31. 31.
    Roberts JA, Drage NA, Davies J, Thomas DW. Effective dose from cone beam CT examinations in dentistry. Br J Radiol. 2009;82:35–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Koong B. Cone beam imaging: is this the ultimate imaging modality? Clin Oral Implants Res. 2010;21:1201–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsiklakis K, Donta C, Gavala S, Karayianni K, Kamenopoulou V, Hourdakis CJ. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur J Radiol. 2005;56:413–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Li T, Li X, Yang Y, Zhang Y, Heron DE, Huq MS. Simultaneous reduction of radiation dose and scatter for CBCT by using collimators. Med Phys. 2013;40:121913.CrossRefPubMedGoogle Scholar
  35. 35.
    Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imag Med. 2012;4:229–40.CrossRefGoogle Scholar
  36. 36.
    Alsufyani NA, Noga ML, Finlay WH, Major PW. Topical contrast agents to improve soft-tissue contrast in the upper airway using cone beam CT: a pilot study. Dentomaxillofac Radiol. 2013;42:20130022.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Endo M, Tsunoo T, Nakamori N, Yoshida K. Effect of scattered radiation on image noise in cone beam CT. Med Phys. 2001;28:469.CrossRefPubMedGoogle Scholar
  38. 38.
    Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40:265–73.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Meilinger M, Schmidgunst C, Schütz O, Lang EW. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information. Z Med Phys. 2011;21:174–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang Q, Li L, Zhang L, Chen Z, Kang K. A novel metal artifact reducing method for cone-beam CT based on three approximately orthogonal projections. Phys Med Biol. 2013;58:1–17.CrossRefPubMedGoogle Scholar
  41. 41.
    Li X, Li T, Yang Y, Heron DE, Huq MS. A novel image-domain-based cone-beam computed tomography enhancement algorithm. Phys Med Biol. 2011;56:2755–66.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhu L, Wang J, Xing L. Noise suppression in scatter correction for cone-beam CT. Med Phys. 2009;36:741–52.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Stuehmer C, Essig H, Bormann K-H, Majdani O, Gellrich N-C, Rücker M. Cone beam CT imaging of airgun injuries to the craniomaxillofacial region. Int J Oral Maxillofac Surg. 2008;37:903–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Luckow M, Deyhle H, Beckmann F, Dagassan-Berndt D, Müller B. Tilting the jaw to improve the image quality or to reduce the dose in cone-beam computed tomography. Eur J Radiol. 2011;80:e389–93.CrossRefPubMedGoogle Scholar
  45. 45.
    Kataoka ML, Hochman MG, Rodriguez EK, Lin P-JP, Kubo S, Raptopolous VD. A review of factors that affect artifact from metallic hardware on multi-row detector computed tomography. Curr Probl Diagn Radiol. 2010;39:125–36.CrossRefPubMedGoogle Scholar
  46. 46.
    Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, et al. Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics. 2008;28:2009–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Dixon RL, Boone JM. Stationary table CT dosimetry and anomalous scanner-reported values of CTDIvol. Med Phys. 2014;41:011907.CrossRefPubMedGoogle Scholar
  48. 48.
    American Association of Physicists in Medicine. Report of AAPM Task Group 111: The Future of CT Dosimetry. Comprehensive Methodology for the Evaluation of Radiation Dose in X-Ray Computed Tomography. AAPM; 2010.Google Scholar
  49. 49.
    Zbijewski W, De Jean P, Prakash P, Ding Y, Stayman JW, Packard N, et al. A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization. Med Phys. 2011;38:4700–13.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol. 2004;33:83–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Braak SJ, van Strijen MJL, van Es HW, Nievelstein RAJ, van Heesewijk JPM. Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol. 2011;22:455–61.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2015

Authors and Affiliations

  • Ambrose J. Huang
    • 1
    Email author
  • Connie Y. Chang
    • 1
  • Bijoy J. Thomas
    • 2
  • Peter J. MacMahon
    • 3
  • William E. Palmer
    • 1
  1. 1.Department of Radiology, Division of Musculoskeletal Imaging and InterventionMassachusetts General HospitalBostonUSA
  2. 2.Department of RadiologyUniversal College of Medical SciencesBhairahawaNepal
  3. 3.Department of RadiologyMater Misericordiae University HospitalDublin 7Ireland

Personalised recommendations