Skeletal Radiology

, Volume 44, Issue 6, pp 849–856 | Cite as

Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls

  • Lukas Filli
  • Roger Luechinger
  • Thomas Frauenfelder
  • Stefan Beck
  • Roman Guggenberger
  • Nadja Farshad-Amacker
  • Gustav Andreisek
Technical Report



To evaluate metal artifacts induced by biodegradable magnesium—a new class of degradable biomaterial that is beginning to enter the orthopedic routine—on CT and MRI compared to standard titanium and steel controls.


Different pins made of titanium, stainless steel, and biodegradable magnesium alloys were scanned using a second-generation dual-energy multidetector CT and a 1.5-T MR scanner. In CT, quantitative assessment of artifacts was performed by two independent readers by measuring the noise in standardized regions of interest close to the pins. In MRI, the artifact diameter was measured. Interobserver agreement was evaluated using intraclass correlation coefficients. Artifacts were compared using Mann Whitney U tests.


In comparison to stainless steel, biodegradable magnesium alloys induced significantly fewer artifacts in both 1.5-T MRI (p = 0.019–0.021) and CT (p = 0.003–0.006). Compared to titanium, magnesium induced significantly less artifact-related noise in CT (p = 0.003–0.008). Although artifacts were less on MRI for biodegradable magnesium compared to titanium, this result was not statistically significant.


Biodegradable magnesium alloys induce substantially fewer artifacts in CT compared to standard titanium and stainless steel, and fewer artifacts in MRI for the comparison with stainless steel.


Biodegradable implants Magnesium Artifacts Magnetic resonance imaging Multidetector computed tomography 



Computed tomography


Fast-field echo


Hounsfield units




Intraclass correlation coefficient




Magnetic resonance imaging


Region of interest




Slice encoding for metal artifact correction


View angle tilting


Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics Rev Publ Radiol Soc N Am Inc. 2004;24(6):1679–91.Google Scholar
  2. 2.
    Ernstberger T, Heidrich G, Buchhorn G. Postimplantation MRI with cylindric and cubic intervertebral test implants: evaluation of implant shape, material, and volume in MRI artifacting–an in vitro study. Spine J Off J North Am Spine Soc. 2007;7(3):353–9.CrossRefGoogle Scholar
  3. 3.
    Prell D, Kyriakou Y, Beister M, Kalender WA. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography. Phys Med Biol. 2009;54(21):6575–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics Rev Publ Radiol Soc N Am Inc. 2007;27(3):791–803.Google Scholar
  5. 5.
    Liu PT, Pavlicek WP, Peter MB, Spangehl MJ, Roberts CC, Paden RG. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skelet Radiol. 2009;38(8):797–802.CrossRefGoogle Scholar
  6. 6.
    Harris CA, White LM. Metal artifact reduction in musculoskeletal magnetic resonance imaging. Orthop Clin N Am. 2006;37(3):349–59. vi.CrossRefGoogle Scholar
  7. 7.
    Prell D, Kyriakou Y, Kachelrie M, Kalender WA. Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach. Investig Radiol. 2010;45(11):747–54.CrossRefGoogle Scholar
  8. 8.
    Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol. 2012;199(6):W735–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Koch KM, Brau AC, Chen W, Gold GE, Hargreaves BA, Koff M, et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reson Med. 2011;65(1):71–82.CrossRefGoogle Scholar
  10. 10.
    Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.CrossRefPubMedGoogle Scholar
  12. 12.
    Windhagen H, Radtke K, Weizbauer A, Diekmann J, Noll Y, Kreimeyer U, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online. 2013;12:62.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Waizy H, Diekmann J, Weizbauer A, Reifenrath J, Bartsch I, Neubert V, et al. In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months. J Biomater Appl. 2013.Google Scholar
  14. 14.
    Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, et al. Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011;7(1):432–40.CrossRefPubMedGoogle Scholar
  15. 15.
    ASTM F2119-07. Standard test method for evaluation of MR image artifacts from passive implants: ASTM; 2007.Google Scholar
  16. 16.
    Shinohara Y, Sakamoto M, Iwata N, Kishimoto J, Kuya K, Fujii S, et al. Usefulness of monochromatic imaging with metal artifact reduction software for computed tomography angiography after intracranial aneurysm coil embolization. Acta Radiol. 2013.Google Scholar
  17. 17.
    Guggenberger R, Winklhofer S, Osterhoff G, Wanner GA, Fortunati M, Andreisek G, et al. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22(11):2357–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Kundel HL, Polansky M. Measurement of observer agreement. Radiology. 2003;228(2):303–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Tello R, Crewson PE. Hypothesis testing II: means. Radiology. 2003;227(1):1–4.CrossRefPubMedGoogle Scholar
  20. 20.
    White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol. 2002;6(1):5–17.CrossRefPubMedGoogle Scholar
  21. 21.
    Moon SG, Hong SH, Choi JY, Jun WS, Kang HG, Kim HS, et al. Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-dimensional quantitative assessment. J Comput Assist Tomogr. 2008;32(4):630–3.CrossRefPubMedGoogle Scholar
  22. 22.
    Mahnken AH, Raupach R, Wildberger JE, Jung B, Heussen N, Flohr TG, et al. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Investig Radiol. 2003;38(12):769–75.CrossRefGoogle Scholar
  23. 23.
    Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology. 2013;268(1):237–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Ernstberger T, Buchhorn G, Heidrich G. Artifacts in spine magnetic resonance imaging due to different intervertebral test spacers: an in vitro evaluation of magnesium versus titanium and carbon-fiber-reinforced polymers as biomaterials. Neuroradiology. 2009;51(8):525–9.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Sect Cervical Spine Res Soc. 2009;18 Suppl 1:102–8.CrossRefGoogle Scholar
  26. 26.
    Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology. 2012;265(1):204–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang J, He Y, Maitz MF, Collins B, Xiong K, Guo L, et al. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Acta Biomater. 2013;9(10):8678–89.CrossRefPubMedGoogle Scholar
  29. 29.
    Ostrowski N, Lee B, Enick N, Carlson B, Kunjukunju S, Roy A, et al. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys. Acta Biomater. 2013;9(10):8704–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Zomorodian A, Garcia MP, Moura EST, Fernandes JC, Fernandes MH, Montemor MF. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Acta Biomater. 2013;9(10):8660–70.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2014

Authors and Affiliations

  • Lukas Filli
    • 1
    • 4
  • Roger Luechinger
    • 2
  • Thomas Frauenfelder
    • 1
  • Stefan Beck
    • 3
  • Roman Guggenberger
    • 1
  • Nadja Farshad-Amacker
    • 1
  • Gustav Andreisek
    • 1
  1. 1.Department of Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
  3. 3.Synthes GmbHZuchwilSwitzerland
  4. 4.Department of RadiologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations