Advertisement

Skeletal Radiology

, Volume 42, Issue 8, pp 1151–1156 | Cite as

ShearWave elastography: repeatability for measurement of tendon stiffness

  • C. D. PeltzEmail author
  • J. A. Haladik
  • G. Divine
  • D. Siegal
  • M. van Holsbeeck
  • M. J. Bey
Technical Report

Introduction

Tendon injuries are common and a significant source of pain and disability. Tendon injuries are often treated with a variety of non-surgical (e.g., physical therapy) and surgical interventions, along with a reduction of normal physical activities as the tendon heals [1, 2, 3]. However, it is difficult to objectively determine when the tendon has healed sufficiently and has the functional capacity to return to normal activities. Previous research has documented the functional capacity of tendons by measuring their stiffness under in vitro [4, 5] and in vivo [6, 7] conditions, but the technologies used for measuring tendon stiffness are applicable only to in vitro conditions (e.g., mechanical testing systems) or require the highly invasive implantation of sensors (e.g., strain gauges) under in vivo conditions. Conventional imaging modalities (e.g., ultrasound, MRI) can monitor changes in the appearance of tendons over time, but these imaging modalities do not provide an...

Keywords

Patellar Tendon Achilles Tendon Breast Imaging Tendon Injury Healing Tendon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Maffulli N, Longo UG, Denaro V (2010) Novel approaches for the management of tendinopathy. J Bone Joint Surg Am 92(15):2604–13. doi: 10.2106/JBJS.I.01744 PubMedCrossRefGoogle Scholar
  2. 2.
    Maffulli N, Longo UG, Loppini M, Denaro V (2010) Current treatment options for tendinopathy. Expert Opin Pharmacother 11(13):2177–86. doi: 10.1517/14656566.2010.495715 PubMedCrossRefGoogle Scholar
  3. 3.
    Rodriguez-Merchan EC (2012) The treatment of patellar tendinopathy. J Orthop Traumatol. doi: 10.1007/s10195-012-0220-0 Google Scholar
  4. 4.
    Neviaser A, Andarawis-Puri N, Flatow E (2012) Basic mechanisms of tendon fatigue damage. J Shoulder Elbow Surg 21(2):158–63. doi: 10.1016/j.jse.2011.11.014 PubMedCrossRefGoogle Scholar
  5. 5.
    Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J et al (2000) Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg 9(2):79–84PubMedCrossRefGoogle Scholar
  6. 6.
    Ravary B, Pourcelot P, Bortolussi C, Konieczka S, Crevier-Denoix N (2004) Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin Biomech (Bristol, Avon) 19(5):433–47CrossRefGoogle Scholar
  7. 7.
    Rupert M, Grood E, Byczkowski T, Levy M (1998) Influence of sensor size on the accuracy of in-vivo ligament and tendon force measurements. J Biomech Eng 120(6):764–9PubMedCrossRefGoogle Scholar
  8. 8.
    Evans A, Whelehan P, Thomson K, McLean D, Brauer K, Purdie C et al (2010) Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 12(6):R104. doi: 10.1186/bcr2787 PubMedCrossRefGoogle Scholar
  9. 9.
    Couade M, Pernot M, Prada C, Messas E, Emmerich J, Bruneval P et al (2010) Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med Biol 36(10):1662–76. doi: 10.1016/j.ultrasmedbio.2010.07.004 PubMedCrossRefGoogle Scholar
  10. 10.
    Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C (2012) Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 56(6):2125–33. doi: 10.1002/hep.25936 PubMedCrossRefGoogle Scholar
  11. 11.
    Ferraioli G, Tinelli C, Zicchetti M, Above E, Poma G, Di Gregorio M et al (2012) Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity. Eur J Radiol 81(11):3102–6. doi: 10.1016/j.ejrad.2012.05.030 PubMedCrossRefGoogle Scholar
  12. 12.
    Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36(5):789–801. doi: 10.1016/j.ultrasmedbio.2010.02.013 PubMedCrossRefGoogle Scholar
  13. 13.
    Altman DG (1991) Practical statistics for medical research. Chapman and Hall, LondonGoogle Scholar
  14. 14.
    Arda K, Ciledag N, Aktas E, Aribas BK, Kose K (2011) Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol 197(3):532–6. doi: 10.2214/AJR.10.5449 PubMedCrossRefGoogle Scholar
  15. 15.
    Kot BC, Zhang ZJ, Lee AW, Leung VY, Fu SN (2012) Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One 7(8):e44348. doi: 10.1371/journal.pone.0044348 PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2013

Authors and Affiliations

  • C. D. Peltz
    • 1
    Email author
  • J. A. Haladik
    • 1
  • G. Divine
    • 2
  • D. Siegal
    • 3
  • M. van Holsbeeck
    • 3
  • M. J. Bey
    • 1
  1. 1.Bone and Joint CenterHenry Ford HospitalDetroitUSA
  2. 2.Department of Public Health SciencesHenry Ford HospitalDetroitUSA
  3. 3.Department of RadiologyHenry Ford HospitalDetroitUSA

Personalised recommendations