Skeletal Radiology

, Volume 42, Issue 4, pp 579–586 | Cite as

High-resolution magnetic resonance-guided posterior femoral cutaneous nerve blocks

  • Jan Fritz
  • Cary Bizzell
  • Sudhir Kathuria
  • Aaron J. Flammang
  • Eric H. Williams
  • Allan J. Belzberg
  • John A. Carrino
  • Avneesh Chhabra
Technical Report



To assess the feasibility, technical success, and effectiveness of high-resolution magnetic resonance (MR)-guided posterior femoral cutaneous nerve (PFCN) blocks.

Materials and methods

A retrospective analysis of 12 posterior femoral cutaneous nerve blocks in 8 patients [6 (75 %) female, 2 (25 %) male; mean age, 47 years; range, 42–84 years] with chronic perineal pain suggesting PFCN neuropathy was performed. Procedures were performed with a clinical wide-bore 1.5-T MR imaging system. High-resolution MR imaging was utilized for visualization and targeting of the PFCN. Commercially available, MR-compatible 20-G needles were used for drug delivery. Variables assessed were technical success (defined as injectant surrounding the targeted PFCN on post-intervention MR images) effectiveness, (defined as post-interventional regional anesthesia of the target area innervation downstream from the posterior femoral cutaneous nerve block), rate of complications, and length of procedure time.


MR-guided PFCN injections were technically successful in 12/12 cases (100 %) with uniform perineural distribution of the injectant. All blocks were effective and resulted in post-interventional regional anesthesia of the expected areas (12/12, 100 %). No complications occurred during the procedure or during follow-up. The average total procedure time was 45 min (30–70) min.


Our initial results demonstrate that this technique of selective MR-guided PFCN blocks is feasible and suggest high technical success and effectiveness. Larger studies are needed to confirm our initial results.


  1. 1.
    Gray H, Lewis WH. Anatomy of the human body. 20th ed. New York:; 2000.Google Scholar
  2. 2.
    Mobbs RJ, Szkandera B, Blum P. Posterior femoral cutaneous nerve entrapment neuropathy: operative exposure and technique. Br J Neurosurg. 2002;16(3):309–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Tubbs RS, Miller J, Loukas M, Shoja MM, Shokouhi G, Cohen-Gadol AA. Surgical and anatomical landmarks for the perineal branch of the posterior femoral cutaneous nerve: implications in perineal pain syndromes. Laboratory investigation. J Neurosurg. 2009;111(2):332–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Darnis B, Robert R, Labat JJ, et al. Perineal pain and inferior cluneal nerves: anatomy and surgery. Surg Radiol Anat. 2008;30(3):177–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Arnoldussen WJ, Korten JJ. Pressure neuropathy of the posterior femoral cutaneous nerve. Clin Neurol Neurosurg. 1980;82(1):57–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Chutkow JG. Posterior femoral cutaneous neuralgia. Muscle Nerve. 1988;11(11):1146–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Dumitru D, Marquis S. Posterior femoral cutaneous nerve neuropathy and somatosensory evoked potentials. Arch Phys Med Rehabil. 1988;69(1):44–5.PubMedGoogle Scholar
  8. 8.
    Gomceli YB, Kapukiran A, Kutlu G, Kurt S, Baysal AI. A case report of an uncommon neuropathy: posterior femoral cutaneous neuropathy. Acta Neurol Belg. 2005;105(1):43–5.PubMedGoogle Scholar
  9. 9.
    Mathias SD, Kuppermann M, Liberman RF, Lipschutz RC, Steege JF. Chronic pelvic pain: prevalence, health-related quality of life, and economic correlates. Obstet Gynecol. 1996;87(3):321–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Obach J, Aragones JM, Ruano D. The infrapiriformis foramen syndrome resulting from intragluteal injection. J Neurol Sci. 1983;58(1):135–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Schaeffer AJ. Etiology and management of chronic pelvic pain syndrome in men. Urology. 2004;63(3 Suppl 1):75–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Wesselmann U, Burnett AL, Heinberg LJ. The urogenital and rectal pain syndromes. Pain. 1997;73(3):269–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Filler AG. Diagnosis and treatment of pudendal nerve entrapment syndrome subtypes: imaging, injections, and minimal access surgery. Neurosurg Focus. 2009;26(2):E9.PubMedCrossRefGoogle Scholar
  14. 14.
    Hughes PJ, Brown TC. An approach to posterior femoral cutaneous nerve block. Anaesth Intensive Care. 1986;14(4):350–1.PubMedGoogle Scholar
  15. 15.
    Barbero C, Fuzier R, Samii K. Anterior approach to the sciatic nerve block: adaptation to the patient’s height. Anesth Analg. 2004;98(6):1785–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Chelly JE, Delaunay L. A new anterior approach to the sciatic nerve block. Anesthesiology. 1999;91(6):1655–60.PubMedCrossRefGoogle Scholar
  17. 17.
    De Tran QH, Clemente A, Finlayson RJ. A review of approaches and techniques for lower extremity nerve blocks. Can J Anaesth. 2007;54(11):922–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Chhabra A, Williams EH, Wang KC, Dellon AL, Carrino JA. MR neurography of neuromas related to nerve injury and entrapment with surgical correlation. Am J Neuroradiol. 2010;31(8):1363–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Thawait SK, Wang K, Subhawong TK, et al. Peripheral nerve surgery: the role of high-resolution MR neurography. AJNR Am J Neuroradiol. 2012;33(2):203–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Chhabra A, Lee PP, Bizzell C, Soldatos T. 3 Tesla MR neurography–technique, interpretation, and pitfalls. Skeletal Radiol. 2011;40(10):1249–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Chhabra A, Soldatos T, Andreisek G. Lumbosacral Plexus. In: Chhabra A, Andreisek G, editors. Magnetic resonance neurography. New Delhi: Jaypee Brothers Medical Publishers; 2012. pp. 161–81.CrossRefGoogle Scholar
  22. 22.
    Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL. Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. Am J Roentgenol. 2009;192(4):W161–7.CrossRefGoogle Scholar
  23. 23.
    Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol. 2003;14(9 Pt 2):S199–202.PubMedCrossRefGoogle Scholar
  24. 24.
    Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR. Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR Am J Roentgenol. 1996;166(6):1337–45.PubMedGoogle Scholar
  25. 25.
    Fritz J, Niemeyer T, Clasen S, et al. Management of chronic low back pain: rationales, principles, and targets of imaging-guided spinal injections. Radiographics. 2007;27(6):1751–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Shetty SK, Nelson EN, Lawrimore TM, Palmer WE. Use of gadolinium chelate to confirm epidural needle placement in patients with an iodinated contrast reaction. Skeletal Radiol. 2007;36(4):301–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Safriel Y, Ali M, Hayt M, Ang R. Gadolinium use in spine procedures for patients with allergy to iodinated contrast–experience of 127 procedures. Am J Neuroradiol. 2006;27(6):1194–7.PubMedGoogle Scholar
  28. 28.
    Fritz J, Henes JC, Thomas C, et al. Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol. 2008;191(6):1717–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Fritz J, Thainual P, Ungi T, et al. Augmented reality visualization with image overlay for MRI-guided intervention: accuracy for lumbar spinal procedures with a 1.5-T MRI system. AJR Am J Roentgenol. 2012;198(3):W266–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Wacker FK, Vogt S, Khamene A, et al. An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology. 2006;238(2):497–504.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2012

Authors and Affiliations

  • Jan Fritz
    • 1
    • 5
  • Cary Bizzell
    • 1
  • Sudhir Kathuria
    • 1
  • Aaron J. Flammang
    • 2
  • Eric H. Williams
    • 3
    • 6
  • Allan J. Belzberg
    • 4
  • John A. Carrino
    • 1
  • Avneesh Chhabra
    • 1
  1. 1.Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Siemens Corporate ResearchCenter for Applied Medical ImagingBaltimoreUSA
  3. 3.Department of Plastic, Reconstructive, and Maxillofacial SurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of NeurosurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Dellon Institute for Peripheral Nerve SurgeryTowsonUSA

Personalised recommendations