Advertisement

Skeletal Radiology

, Volume 42, Issue 3, pp 363–370 | Cite as

Three-dimensional topographical variation of femoral cartilage T2 in healthy volunteer knees

  • Toshiyuki Shiomi
  • Takashi NishiiEmail author
  • Ken Nakata
  • Satoru Tamura
  • Hisashi Tanaka
  • Youichi Yamazaki
  • Kenya Murase
  • Hideki Yoshikawa
  • Nobuhiko Sugano
Scientific Article

Abstract

Objective

Quantitative knee cartilage T2 assessment on limited two-dimensional midsagittal or midcoronal planes may be insufficient to assess variations in normal cartilage composition. The purpose of this work was to reveal characteristic 3D distribution of T2 values in femoral cartilage in healthy volunteer knees.

Materials and methods

Sixteen volunteers were enrolled in this study. One knee joint in each volunteer was imaged using a 3D fast image employing steady-state acquisition cycled phases (FIESTA-C) sequence for modeling distal femoral morphology, as well as a sagittal T2 mapping of cartilage. 3D distribution of cartilage T2 values was generated for the femoral condyles. At each medial and lateral condyle, four regions of interest (ROI) were manually defined based on the cartilage covered by the 3D surface model of the medial and lateral menisci.

Results

The 3D maps showed a relatively inhomogeneous distribution of cartilage T2 on the medial and lateral condyles. Cartilage T2 values in the internal half of the weight-bearing zone were significantly higher than those in all other zones on both lateral and medial condyles.

Conclusions

Analysis of 3D distribution of femoral cartilage T2 may be valuable in determining the site-specific normal range of cartilage T2 in the healthy knee joint.

Keywords

MRI Cartilage T2 Three dimension Topographical variation Knee joint 

Notes

Acknowledgments

This work was supported in part by Health and Labour Science Research Grants of Comprehensive Research on Aging and Health, and Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture (22390290) in Japan. The authors declare that they have no conflicts of interest.

References

  1. 1.
    Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology. 2006;214:259–66.Google Scholar
  2. 2.
    Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232:592–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Burstein D, Bashir A, Gray ML. MRI techniques in early stages of cartilage disease. Invest Radiol. 2000;35:622–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Li X, Benjamin M, Link TM, et al. In vivo T and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15:789–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Wayne JS, Kraft KA, Shields KJ, Yin C, Owen JR, Disler DG. MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Radiology. 2003;228:493–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Liess C, Lüsse S, Karger N, Heller M, Glüer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage. 2002;10:907–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Nieminen MT, Töyräs J, Rieppo J, et al. Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med. 2000;43:676–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Mosher TJ, Liu Y, Yang QX. Age dependency of cartilage magnetic resonance imaging: comparison with severity of knee osteoarthritis. Arthritis Rheum. 2004;50:2820–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14:50–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Mosher TJ, Collins CM, Smith HE, et al. Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging. 2004;19:323–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Eckstein F, Winzheimer M, Hohe J, Englmeier KH, Reiser M. Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage. 2001;9:101–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Akhtar S, Poh CL, Kitney RI. An MRI derived articular cartilage visualization framework. Osteoarthritis Cartilage. 2007;15:1070–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Bae KT, Shim H, Tao C, et al. Intra- and inter-observer reproducibility of volume measurement of knee cartilage segment from the OAI MR image set using a novel semi-automated segmentation method. Osteoarthritis Cartilage. 2009;17:1589–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Carbalido-Gamio J, Link TM, Majumdar S. New techniques for cartilage magnetic resonance imaging relaxation time analysis: texture analysis of flattened cartilage and localized intra- and inter-subject comparisons. Magn Reson Med. 2008;59:1472–7.CrossRefGoogle Scholar
  15. 15.
    Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int. 2005;16:1307–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Gold GE, Hargreaves BA, Reeder SB, et al. Balanced SSFP imaging of the musculoskeletal system. J Magn Reson Imaging. 2007;25:270–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Koff MF, Amrami KK, Kaufman KR. Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis. Osteoarthritis Cartilage. 2007;15:198–204.PubMedCrossRefGoogle Scholar
  18. 18.
    Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5:262–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Watanabe A, Boesch C, Obata T, Anderson SE. Effect of multislice acquisition on T1 and T2 measurements of articular cartilage at 3 T. J Magn Reson Imaging. 2007;26:109–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Lüsse S, Claassen H, Gehrke T, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging. 2000;18:423–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Mosher TJ, Smith HE, Collins C, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234:245–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Nag D, Liney GP, Gillespie P, Scerman KP. Quantification of T2 relaxation changes in articular cartilage with in situ mechanical loading of the knee. J Magn Reson Imaging. 2004;19:317–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging. 2008;28:175–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Slauterbeck JR, Kousa P, Clifton BC, et al. Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J Bone Joint Surg Am. 2009;91:2094–103.PubMedCrossRefGoogle Scholar
  26. 26.
    Caballido-Gamio J, Stahl R, Blumenkrantz G, Romero A, Majumdar S, Link TM. Spatial analysis of magnetic resonance T1rho and T2 relaxation times improves classification between subjects with and without osteoarthritis. Med Phys. 2009;36:4059–67.CrossRefGoogle Scholar
  27. 27.
    Hohe J, Faber S, Muehlbauer R, Reiser M, Englmeier KH, Eckstein F. Three-dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage. Med Eng Phys. 2002;24:219–27.PubMedCrossRefGoogle Scholar
  28. 28.
    Clark JM. Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man. J Orthop Res. 1991;9:246–57.PubMedCrossRefGoogle Scholar
  29. 29.
    Goodwin DW, Wadghiri YZ, Zhu H, Vinton CJ, Smith ED, Dunn JF. Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. AJR. 2004;182:311–8.PubMedGoogle Scholar
  30. 30.
    Hannila I, Raina SS, Tervonen O, Ojara R, Nieminen MT. Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5 T. Osteoarthritis Cartilage. 2009;17:1570–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Stahl R, Blumenkrantz G, Carballido-Gamio J, et al. MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up. Osteoarthritis Cartilage. 2007;15:1225–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Stahl R, Luke A, Li X, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. Eur Radiol. 2009;19:132–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Watanabe A, Boesch C, Siebenrock K, Obata T, Anderson SE. T2 mapping of hip articular cartilage in healthy volunteers at 3 T. J Magn Reson Imaging. 2007;26:165–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Stenhamre H, Slynarski K, Petren C, Tallheden T, Lindahl A. Topographic variation in redifferentiation capacity of chondrocytes in the adult human knee joint. Osteoarthritis Cartilage. 2008;17:1356–62.CrossRefGoogle Scholar
  35. 35.
    Mayerhoefer ME, Welsch GH, Mamisch TC, et al. The in vivo effects of unloading and compression on T1-Gd (dGEMRIC) relaxation times in healthy articular knee cartilage at 3.0 Tesla. Eur Radiol. 2010;20:443–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Linder-Ganz E, Elsner JJ, Danio A, Guilak F, Shterling A. A novel quantitative approach for evaluating contact mechanics of meniscal replacements. J Biomech Eng. 2010;32:024501.CrossRefGoogle Scholar
  37. 37.
    Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech. 2005;20:498–507.CrossRefGoogle Scholar
  38. 38.
    Oh J, Han ET, Pelletier D, Nelson SJ. Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging. 2006;24:33–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Mosher TJ, Zhang Z, Reddy R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258:832–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Xia Y, Farquhar T, Burton-Wurster N, Lust G. Origin of cartilage laminae in MRI. J Magn Reson Imaging. 1997;7:887–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Henkelman RM, Stanisz GJ, Kim JK, Bronskill MJ. Anisotropy of NMR properties of tissues. Magn Reson Med. 1994;32:592–601.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2012

Authors and Affiliations

  • Toshiyuki Shiomi
    • 1
  • Takashi Nishii
    • 1
    • 2
    Email author
  • Ken Nakata
    • 1
  • Satoru Tamura
    • 2
  • Hisashi Tanaka
    • 3
  • Youichi Yamazaki
    • 4
  • Kenya Murase
    • 4
  • Hideki Yoshikawa
    • 1
  • Nobuhiko Sugano
    • 1
    • 2
  1. 1.Department of Orthopaedic SurgeryOsaka University Medical SchoolSuitaJapan
  2. 2.Department of Orthopaedic Medical EngineeringOsaka University Medical SchoolSuitaJapan
  3. 3.Department of RadiologyOsaka University Medical SchoolSuitaJapan
  4. 4.Department of Medical Physics and EngineeringOsaka University Medical SchoolSuitaJapan

Personalised recommendations