Skeletal Radiology

, Volume 41, Issue 12, pp 1605–1611 | Cite as

Paleopathological findings in radiographs of ancient and modern Greek skulls

  • Manolis J. Papagrigorakis
  • Kostas G. Karamesinis
  • Kostas P. Daliouris
  • Antonis A. Kousoulis
  • Philippos N. Synodinos
  • Michail D. Hatziantoniou
Scientific Article



The skull, when portrayed radiologically, can be a useful tool in detecting signs of systemic diseases and results of pathological growth mechanisms. The aim of this study was therefore to examine, compare, and classify findings in cranial configuration of pathological origin, in modern and ancient skulls.

Materials and methods

The material consists of 240 modern and 141 ancient dry skulls. Three radiographs for each skull (lateral, anteroposterior, basilar) provide enough evidence for differential diagnoses.


Cases of osteoporosis are among the interesting pathological findings. A prevalence of female modern skulls in those determined as osteoporotic skulls is noted. Special interest is placed on the area of the sella turcica and many variations, regarding the shape and texture, are recognized both in ancient and modern skulls. Malignancies and important causes of cranial destruction are identified in both skull collections. Diploid thickening and osteolytic areas appear commonly among ancient remains. Moreover, from the ancient skull collection, one case possibly recognizable as fibrous dysplasia is noted while another case with an unusual exostosis gives rise to many questions.


Interpreted with caution, the results of the present study, which can serve as an approach of paleopathology and paleoradiology, indicate similarity trends in cranial configuration of pathologic origin in modern and ancient people. Radiography and cephalometry were the main diagnostic tools used to gather evidence and are evaluated as a quite appropriate method to examine anthropological material and assess the internal structure of skeletal remains since they are non-destructive techniques.


Radiology Paleopathology Prehistory Greece 20th century 5th century b.c. 


  1. 1.
    Zafiratos K. Paleopathology: evidence from organic remains for the health and the way of living of prehistoric people. Anthropol Analecta. 1988;49:13–9.Google Scholar
  2. 2.
    Ortner DJ. What skeletons tell us. The story of human paleopathology. Virchows Arch. 2011;459(3):247–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Chhem RK. Paleoradiology: imaging disease in mummies and ancient skeletons. Skeletal Radiol. 2006;35(11):803–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Braunstein EM, White SJ, Russell W, Harris JE. Paleoradiologic evaluation of the Egyptian royal mummies. Skeletal Radiol. 1988;17(5):348–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Bloom RA, Smith P. On the antiquity of the seronegative spondyloarthropathies: evidence from ancient Judea. Skeletal Radiol. 1992;21(2):111–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Wanek J, Székely G, Rühli F. X-ray absorption-based imaging and its limitations in the differentiation of ancient mummified tissue. Skeletal Radiol. 2011;40(5):595–601.PubMedCrossRefGoogle Scholar
  7. 7.
    Chhem RK, Rühli FJ. Paleoradiology: current status and future challenges. Can Assoc Radiol J. 2004;55(4):198–9.PubMedGoogle Scholar
  8. 8.
    Hoffman H, Hudgins PA. Head and skull base features of nine Egyptian mummies: evaluation with high-resolution CT and reformation techniques. AJR Am J Roentgenol. 2002;178(6):1367–76.PubMedGoogle Scholar
  9. 9.
    Grampp S, Steiner E, Imhof H. Radiological diagnosis of osteoporosis. Eur Radiol. 1997;7(2):11–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Taxel P, Kenny A. Differential diagnosis and secondary causes of osteoporosis. Clin Cornestone. 2000;2(6):11–9.CrossRefGoogle Scholar
  11. 11.
    Frigo P, Lang C. Images in clinical medicine. Osteoporosis in a woman of the early Bronze Age. N Engl J Med. 1995;333(22):1468.PubMedCrossRefGoogle Scholar
  12. 12.
    Dequeker J, Ortner DJ, Stix AI, Cheng XG, Brys P, Boonen S. Hip fracture and osteoporosis in a XIIth Dynasty female skeleton from Lisht, Upper Egypt. J Bone Miner Res. 1997;12(6):881–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Foldes AJ, Moscovici A, Popovtzer MM, Mogle P, Urman D, Zias J. Extreme osteoporosis in a sixth-century skeleton from the Negev desert. Int J Osteoarchaeol. 1995;5:157–62.CrossRefGoogle Scholar
  14. 14.
    Compston J. Osteoporosis: social and economic impact. Radiol Clin North Am. 2010;48(3):477–82.PubMedCrossRefGoogle Scholar
  15. 15.
    New PFJ. Sella Turcica as a mirror of disease. Rad Clin North Am. 1996;4:75–92.Google Scholar
  16. 16.
    Rennert J, Doerfler A. Imaging of sellar and parasellar lesions. Clin Neurol Neurosurg. 2007;109:111–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Castriota-Scanderbeg A, Dallapiccola B. Abnormalities of the sella turcica. Abnormal skeletal phenotypes. From simple signs to complex diagnoses. Berlin: Springer; 2005.Google Scholar
  18. 18.
    Andredaki M, Koumantanou A, Dorotheou D, Halazonetis DJ. A cephalometric morphometric study of the sella turcica. Eur J Orthod. 2007;29:449–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Tindall GT, Hoffman JC. Evaluation of the abnormal sella turcica. Arch Intern Med. 1980;140:1078–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Friedland B, Meazzini MC. Incidental finding of an enlarged sella turcica on a lateral cephalogram. Am J Orthod. 1996;110(5):508–12.Google Scholar
  21. 21.
    Wren MWG. Significance of the so-called J-shaped sella in the diagnosis of intracranial aneurysm. Brit J Ophthal. 1969;53:307–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Penkrot RJ, Bures C. The “apparently” eroded dorsum sella: a new anomaly. Ame Roentgen Ray Soc. 1979;132:1005–6.Google Scholar
  23. 23.
    Giannetti AV, Guimarães RE, Santiago AP, Perpétuo FO, Machado MA. A tomographic study of the skull base in primary spontaneous cerebrospinal fluid leaks. Neuroradiology. 2011 Jul 8. [Epub ahead of print]Google Scholar
  24. 24.
    Dublin AB, Poirier VC. Fracture of the sella turcica. Am J Roentgenol. 1976;127:969–72.Google Scholar
  25. 25.
    Rosenberg E, Lohr H. A new hereditary bone dysplasia with characteristic bowing and thickening of the distal ulna. Eur J Pediatrics. 1986;145:40–5.CrossRefGoogle Scholar
  26. 26.
    Lee Y, Elliott AM, Loke K, Lachman RS. A distinctive type of metaphyseal chondrodysplasia with characteristic thickening of the distal ulna and radius: possible metaphyseal chondrodysplasia-Rosenberg. Am J Med Gen. 2003;119A:50–6.CrossRefGoogle Scholar
  27. 27.
    Becktor JP, Einersen S, Kjaer I. A sella turcica bridge in subjects with severe craniofacial deviations. Eur J Orthod. 2000;22:69–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Leonardi R, Barbato E, Vichi M, Caltabiano M. A sella turcica bridge in subjects with dental anomalies. Eur J Orthod. 2006;28:580–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Veleminský P, Dobisíková M. Morphological likeness of the skeletal remains in a Central European family from 17th to 19th century. Homo. 2005;56(2):173–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Trible WM. Destructive lesions of the sphenoid. South Med J. 1970;63:849–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Nichols RD, Fujita S, Muzaffar K, Olson NR. Destructive lesions of the sphenoid sinus. ORL. 1974;78:3359–367.Google Scholar
  32. 32.
    Lee K, Yanagisawa K. An obscure etiology for headache: sphenoid sinus disease. Yonsei Med J. 1988;29(3):209–18.PubMedGoogle Scholar
  33. 33.
    Orzincolo C, Castaldi G, Scutellari PN, Franceschini F. The "lamellated" skull in beta-thalassaemia. Skeletal Radiol. 1989;18(5):373–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Waldron HA. Mediterranean anaemia in antiquity. BMJ. 1973;2(5867):667.PubMedCrossRefGoogle Scholar
  35. 35.
    Carter R, Mendis KN. Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev. 2002;15(4):564–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsementzis SA. Neuroradiology. Differential Diagnosis in Neurology and Neurosurgery. A Clinician’s Pocket Guide. Leipzig: Thieme Verlag; 1999.Google Scholar
  37. 37.
    Mcafee JG. The Roentgen signs of systemic disease in the skull. Am J Med Sci. 1958;236:634–60.PubMedGoogle Scholar
  38. 38.
    Stuart-Macadam P. A radiographic study of porotic hyperostosis. Am J Phys Anthropol. 1987;74:511–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Tehranzadeh J, Fung Y, Donohue M, Anavim A, Pribram HW. Computed tomography of Paget disease of the skull versus fibrous dysplasia. Skeletal Radiol. 1998;27(12):664–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Yilmaz A, Musluman M, Aydin Y. Primary osteolytic intraosseous meningioma of the frontal bone. Neurol Neurochir Pol. 2010;44(4):415–8.PubMedGoogle Scholar
  41. 41.
    Canalis RF, Aragon RM, Cabieses F, Hanafee WN. Fibrous dysplasia: findings in a pre-Columbian skull. Am J Otolaryngol. 1980;1(2):131–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Gregg JB, Reed A. Monostotic fibrous dysplasia in the temporal bone: a late prehistoric occurrence. Am J Phys Anthropol. 1980;52(4):587–93.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2012

Authors and Affiliations

  • Manolis J. Papagrigorakis
    • 1
    • 2
  • Kostas G. Karamesinis
    • 1
  • Kostas P. Daliouris
    • 1
  • Antonis A. Kousoulis
    • 1
  • Philippos N. Synodinos
    • 1
  • Michail D. Hatziantoniou
    • 1
  1. 1.Department of PaleopathologyUniversity of AthensAthensGreece
  2. 2.AthensHellas

Personalised recommendations