Skeletal Radiology

, Volume 41, Issue 11, pp 1435–1443

Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI)

  • Keegan K. Hovis
  • Hamza Alizai
  • Seng-Choe Tham
  • Richard B. Souza
  • Michael C. Nevitt
  • Charles E. McCulloch
  • Thomas M. Link
Scientific Article

Abstract

Objectives

The aim of this work was to study anterior cruciate ligament (ACL) degeneration in relation to MRI-based morphological knee abnormalities and cartilage T2 relaxation times in subjects with symptomatic osteoarthritis.

Methods

Two radiologists screened the right knee MRI of 304 randomly selected participants in the Osteoarthritis Initiative cohort with symptomatic OA, for ACL abnormalities. Of the 52 knees with abnormalities, 28 had mucoid degeneration, 12 had partially torn ACLs, and 12 had completely torn ACLs. Fifty-three randomly selected subjects with normal ACLs served as controls. Morphological knee abnormalities were graded using the WORMS score. Cartilage was segmented and compartment-specific T2 values were calculated.

Results

Compared to normal ACL knees, those with ACL abnormalities had a greater prevalence of, and more severe, cartilage, meniscal, bone marrow, subchondral cyst, and medial collateral ligament lesions (all p < 0.05). T2 measurements did not significantly differ by ACL status.

Conclusions

ACL abnormalities were associated with more severe degenerative changes, likely because of greater joint instability. T2 measurements may not be well suited to assess advanced cartilage degeneration.

Keywords

Osteoarthritis Anterior cruciate ligament MRI Knee joint Cartilage T2 values 

References

  1. 1.
    Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Lane NE, Thompson JM. Management of osteoarthritis in the primary-care setting: an evidence-based approach to treatment. Am J Med. 1997;103(6A):25S–30S.PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 2000;43(5):995–1000.PubMedCrossRefGoogle Scholar
  4. 4.
    Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum. 2009;61(4):459–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Chitnavis J, Sinsheimer JS, Clipsham K, Loughlin J, Sykes B, Burge PD, et al. Genetic influences in end-stage osteoarthritis. Sibling risks of hip and knee replacement for idiopathic osteoarthritis. J Bone Joint Surg Br. 1997;79(4):660–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(10):982–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum. 2005;52(3):794–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumar A, Bickerstaff D, Grimwood J. Mucoid cystic degeneration of the cruciate ligament. J Bone Joint Surg Br. 1999;81:304–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Melloni P, Valls R, Yuguero M, Saez A. Mucoid degeneration of the anterior cruciate ligament with erosion of the lateral femoral condyle. Skeletal Radiol. 2004;33(6):359–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med. 1994;22(5):632–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Maletius W, Messner K. Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med. 1999;27(6):711–7.PubMedGoogle Scholar
  13. 13.
    Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol. 2009;38(8):761–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology--ROC analysis in an experimental model. Osteoarthritis Cartilage. 2006;14(1):63–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients--a 3.0-Tesla MRI study. Eur Radiol. 2009;19(1):132–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Mosher TJ, Liu Y, Torok CM. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthritis Cartilage. 2010;18(3):358–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol. 2012;41(3):287–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein MG, Pinto BM, Marcus BH, Lynn H, Jette AM, Rakowski W, et al. Physician-based physical activity counseling for middle-aged and older adults: a randomized trial. Ann Behav Med. 1999;21(1):40–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.PubMedCrossRefGoogle Scholar
  24. 24.
    Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.PubMedCrossRefGoogle Scholar
  25. 25.
    McIntyre J, Moelleken S, Tirman P. Mucoid degeneration of the anterior cruciate ligament mistaken for ligamentous tears. Skeletal Radiol. 2001;30(6):312–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Bergin D, Morrison WB, Carrino JA, Nallamshetty SN, Bartolozzi AR. Anterior cruciate ligament ganglia and mucoid degeneration: coexistence and clinical correlation. AJR Am J Roentgenol. 2004;182(5):1283–7.PubMedGoogle Scholar
  27. 27.
    Lawrance JA, Ostlere SJ, Dodd CA. MRI diagnosis of partial tears of the anterior cruciate ligament. Injury. 1996;27(3):153–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Van Dyck P, De Smet E, Veryser J, Lambrecht V, Gielen JL, Vanhoenacker FM, et al. Partial tear of the anterior cruciate ligament of the knee: injury patterns on MR imaging. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):256–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Bining J, Andrews G, Forster BB. The ABCs of the anterior cruciate ligament: a primer for magnetic resonance imaging assessment of the normal, injured and surgically repaired anterior cruciate ligament. Br J Sports Med. 2009;43(11):856–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Duryea J, Neumann G, Brem MH, Koh W, Noorbakhsh F, Jackson RD, et al. Novel fast semi-automated software to segment cartilage for knee MR acquisitions. Osteoarthritis Cartilage. 2007;15(5):487–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226(2):373–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Hernigou P, Garabedian JM. Intercondylar notch width and the risk for anterior cruciate ligament rupture in the osteoarthritic knee: evaluation by plain radiography and CT scan. Knee. 2002;9(4):313–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Cushner FD, La Rosa DF, Vigorita VJ, Scuderi GR, Scott WN, Insall JN. A quantitative histologic comparison: ACL degeneration in the osteoarthritic knee. J Arthroplasty. 2003;18(6):687–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Almekinders LC, Pandarinath R, Rahusen FT. Knee stability following anterior cruciate ligament rupture and surgery. The contribution of irreducible tibial subluxation. J Bone Joint Surg Am. 2004;86-A(5):983–7.PubMedGoogle Scholar
  35. 35.
    Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N. Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med. 2003;31(1):75–9.PubMedGoogle Scholar
  36. 36.
    Amin S, Guermazi A, Lavalley MP, Niu J, Clancy M, Hunter DJ, et al. Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthritis Cartilage. 2008;16(8):897–902.PubMedCrossRefGoogle Scholar
  37. 37.
    Murrell GA, Maddali S, Horovitz L, Oakley SP, Warren RF. The effects of time course after anterior cruciate ligament injury in correlation with meniscal and cartilage loss. Am J Sports Med. 2001;29(1):9–14.PubMedGoogle Scholar
  38. 38.
    Bellabarba C, Bush-Joseph CA, Bach Jr BR. Patterns of meniscal injury in the anterior cruciate-deficient knee: a review of the literature. Am J Orthop (Belle Mead NJ). 1997;26(1):18–23.Google Scholar
  39. 39.
    Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2000;18(1):109–15.PubMedCrossRefGoogle Scholar
  40. 40.
    David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22(5):673–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Van Dyck P, Vanhoenacker FM, Gielen JL, Dossche L, Van Gestel J, Wouters K, et al. Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: can we differentiate complete from partial tears? Skeletal Radiol. 2011;40(6):701–7.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2012

Authors and Affiliations

  • Keegan K. Hovis
    • 1
  • Hamza Alizai
    • 1
    • 2
  • Seng-Choe Tham
    • 1
  • Richard B. Souza
    • 1
  • Michael C. Nevitt
    • 3
  • Charles E. McCulloch
    • 3
  • Thomas M. Link
    • 1
  1. 1.Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations