Skeletal Radiology

, Volume 41, Issue 8, pp 987–995 | Cite as

Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 Tesla MRI: a feasibility study

  • S. Apprich
  • T. C. Mamisch
  • G. H. Welsch
  • H. Bonel
  • K. A. Siebenrock
  • Y.-J. Kim
  • S. Trattnig
  • M. Dudda
Scientific Article



To define the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration prior to surgery in patients with symptomatic femoroacetabular impingement (FAI), we compared cartilage of the hip joint in patients with FAI and healthy volunteers using T2* mapping at 3.0 Tesla over time.

Materials and methods

Twenty-two patients (13 females and 9 males; mean age 28.1 years) with clinical signs of FAI and Tönnis grade ≤ 1 on anterior-posterior x-ray and 35 healthy age-matched volunteers were examined at a 3 T MRI using a flexible body coil. T2* maps were calculated from sagittal- and coronal-oriented gradient-multi-echo sequences using six echoes (TR 125, TE 4.41/8.49/12.57/16.65/20.73/24.81, scan time 4.02 min), both measured at beginning and end of the scan (45 min time span between measurements). Region of interest analysis was manually performed on four consecutive slices for superior and anterior cartilage. Mean T2* values were compared among patients and volunteers, as well as over time using analysis of variance and Student’s t-test.


Whereas quantitative T2* values for the first measurement did not reveal significant differences between patients and volunteers, either for sagittal (p = 0.644) or coronal images (p = 0.987), at the first measurement, a highly significant difference (p ≤ 0.004) was found for both measurements with time after unloading of the joint. Over time we found decreasing mean T2* values for patients, in contrast to increasing mean T2* relaxation times in volunteers.


The study proved the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration in the hip joint in FAI patients at 3 Tesla to predict possible success of joint-preserving surgery. However, we suggest the time point for measuring T2* as an MR biomarker for cartilage and the changes in T2* over time to be of crucial importance for designing an MR protocol in patients with FAI.


Magnetic resonance imaging Hip Femoroacetubalar impingement Osteoarthritis T2* mapping 


  1. 1.
    Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.PubMedGoogle Scholar
  2. 2.
    Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84(4):556–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87(7):1012–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Beck M, Leunig M, Parvizi J, Boutier V, Wyss D, Ganz R. Anterior femoroacetabular impingement: part II. Midterm results of surgical treatment. Clin Orthop Relat Res. 2004;418:67–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Clohisy JC, St John LC, Schutz AL. Surgical treatment of femoroacetabular impingement: a systematic review of the literature. Clin Orthop Relat Res. 468(2):555–564.Google Scholar
  6. 6.
    Murphy S, Tannast M, Kim YJ, Buly R, Millis MB. Debridement of the adult hip for femoroacetabular impingement: indications and preliminary clinical results. Clin Orthop Relat Res. 2004;429:178–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis—what the radiologist should know. Radiologia. 2008;50(4):271–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Locher S, Werlen S, Leunig M, Ganz R. Inadequate detectability of early stages of coxarthrosis with conventional roentgen images. Z Orthop Ihre Grenzgeb. 2001;139(1):70–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Schmid MR, Notzli HP, Zanetti M, Wyss TF, Hodler J. Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology. 2003;226(2):382–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Czerny C, Hofmann S, Urban M, Tschauner C, Neuhold A, Pretterklieber M, et al. MR arthrography of the adult acetabular capsular-labral complex: correlation with surgery and anatomy. AJR Am J Roentgenol. 1999;173(2):345–9.PubMedGoogle Scholar
  11. 11.
    Mamisch TC, Bittersohl B, Hughes T, Kim YJ, Welsch GH, Dudda M, et al. Magnetic resonance imaging of the hip at 3 Tesla: clinical value in femoroacetabular impingement of the hip and current concepts. Semin Musculoskelet Radiol. 2008;12(3):212–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43-B:752–7.PubMedGoogle Scholar
  13. 13.
    Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Watanabe A, Boesch C, Siebenrock K, Obata T, Anderson SE. T2 mapping of hip articular cartilage in healthy volunteers at 3 T: a study of topographic variation. J Magn Reson Imaging. 2007;26(1):165–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Welsch GH, Trattnig S, Hughes T, Quirbach S, Olk A, Blanke M, et al. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol. 2010;20(6):1515–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Bittersohl B, Hosalkar HS, Hughes T, Kim YJ, Werlen S, Siebenrock KA, et al. Feasibility of T2* mapping for the evaluation of hip joint cartilage at 1.5 T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med. 2009;62(4):896–901.PubMedCrossRefGoogle Scholar
  18. 18.
    Miese FR, Zilkens C, Holstein A, Bittersohl B, Kropil P, Mamisch TC, et al. Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping. Acta Radiol. 52(1):106–110.Google Scholar
  19. 19.
    Liess C, Lusse S, Karger N, Heller M, Gluer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil. 2002;10(12):907–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Mamisch TC, Trattnig S, Quirbach S, Marlovits S, White LM, Welsch GH. Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading-initial results. Radiology. 2010;254(3):818–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Kassarjian A, Belzile E. Femoroacetabular impingement: presentation, diagnosis, and management. Semin Musculoskelet Radiol. 2008;12(2):136–45.PubMedCrossRefGoogle Scholar
  22. 22.
    Tonnis D. Letter: congenital hip dysplasia: clinical and radiological diagnosis (author’s transl). Z Orthop Ihre Grenzgeb. 1976;114(1):98–9.PubMedGoogle Scholar
  23. 23.
    Menezes NM, Gray ML, Hartke JR, Burstein D. T2 and T1rho MRI in articular cartilage systems. Magn Reson Med. 2004;51(3):503–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging. 2008;28(1):175–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D662–670.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2011

Authors and Affiliations

  • S. Apprich
    • 1
    • 2
  • T. C. Mamisch
    • 1
    • 2
  • G. H. Welsch
    • 2
    • 3
  • H. Bonel
    • 4
  • K. A. Siebenrock
    • 1
  • Y.-J. Kim
    • 5
  • S. Trattnig
    • 2
  • M. Dudda
    • 1
  1. 1.Department of Orthopedic SurgeryUniversity of BernBernSwitzerland
  2. 2.Department of Radiology, MR Centre of ExcellenceMedical University of ViennaViennaAustria
  3. 3.Department of Trauma SurgeryUniversity of Erlangen-NürnbergErlangenGermany
  4. 4.Department of RadiologyUniversity of BernBernSwitzerland
  5. 5.Department of Orthopaedic Surgery, Children’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations