Skeletal Radiology

, Volume 40, Issue 12, pp 1575–1579 | Cite as

Long-term in-vitro precision of direct digital X-ray radiogrammetry

  • Alvilde DhainautEmail author
  • Mari Hoff
  • Johan Kälvesten
  • Stian Lydersen
  • Kristina Forslind
  • Glenn Haugeberg
Technical Report



Digital X-ray radiogrammetry (DXR) calculates peripheral bone mineral density (BMD) from hand radiographs. The short-term precision for direct DXR has been reported to be highly satisfactory. However, long-term precision for this method has not been examined. Thus, the aim of this study was to examine the long-term in-vitro precision for the new direct digital version of DXR.

Materials and methods

The in-vitro precision for direct DXR was tested with cadaver phantoms on four different X-ray systems at baseline, 3 months, 6 months, and in one machine also at 12 months. At each time point, 31 measurements were performed.


The in-vitro longitudinal precision for the four radiographic systems ranged from 0.22 to 0.43% expressed as coefficient of variation (CV%). The smallest detectable difference (SDD) ranged from 0.0034 to 0.0054 g/cm2.


The in vitro long-term precision for direct DXR was comparable to the previous reported short-term in-vitro precision for all tested X-ray systems. These data show that DXR is a stable method for detecting small changes in bone density during 6–12 months of follow-up.


Digital X-ray radiogrammetry Precision Rheumatoid arthritis Osteoporosis Bone mineral density 



We thank Abbott for financial support (unrestricted grant to St. Olavs Hospital) and the technicians Olav Syrtveit (Kristiansand), Nimal Liyanaarachchi (Trondheim), and Helen Nymberg (Helsingborg). This work was supported by research grants from the Competence Development Fund of Southern Norway and Sørlandet Hospital HF to Professor Glenn Haugeberg.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Bouxsein ML, Palermo L, Yeung C, Black DM. Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures. Osteoporos Int. 2002;13:358–65.CrossRefGoogle Scholar
  2. 2.
    Bach-Mortensen P, Hyldstrup L, Appleyard M, Hindso K, Gebuhr P, Sonne-Holm S. Digital x-ray radiogrammetry identifies women at risk of osteoporotic fracture: results from a prospective study. Calcif Tissue Int. 2006;79:1–6.CrossRefGoogle Scholar
  3. 3.
    Jensen T, Klarlund M, Hansen M, Jensen KE, Podenphant J, Hansen TM, et al. Bone loss in unclassified polyarthritis and early rheumatoid arthritis is better detected by digital x ray radiogrammetry than dual x ray absorptiometry: relationship with disease activity and radiographic outcome. Ann Rheum Dis. 2004;63:15–22.CrossRefGoogle Scholar
  4. 4.
    Hoff M, Haugeberg G, Odegard S, Syversen S, Landewe R, van der Heijde D, et al. Cortical hand bone loss after 1 year in early rheumatoid arthritis predicts radiographic hand joint damage at 5-year and 10-year follow-up. Ann Rheum Dis. 2009;68:324–9.CrossRefGoogle Scholar
  5. 5.
    Hoff M, Dhainaut A, Kvien TK, Forslind K, Kalvesten J, Haugeberg G. Short-time in vitro and in vivo precision of direct digital X-ray radiogrammetry. J Clin Densitom. 2009;12:17–21.CrossRefGoogle Scholar
  6. 6.
    Hangartner TN. A study of the long-term precision of dual-energy X-ray absorptiometry bone densitometers and implications for the validity of the least-significant-change calculation. Osteoporos Int. 2007;18:513–23.CrossRefGoogle Scholar
  7. 7.
    Rosholm A, Hyldstrup L, Backsgaard L, Grunkin M, Thodberg HH. Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int. 2001;12:961–9.CrossRefGoogle Scholar
  8. 8.
    Jorgensen JT, Andersen PB, Rosholm A, Bjarnason NH. Digital X-ray radiogrammetry: a new appendicular bone densitometric method with high precision. Clin Physiol. 2000;20:330–5.CrossRefGoogle Scholar
  9. 9.
    Barnette E, Nordin BE. The radiological diagnosis of osteoporosis: a new approach. Clin Radiol. 1960;11:166–74.CrossRefGoogle Scholar
  10. 10.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.CrossRefGoogle Scholar
  11. 11.
    Bottcher J, Pfeil A, Rosholm A, Petrovitch A, Seidl BE, Malich A, et al. Digital X-ray radiogrammetry combined with semiautomated analysis of joint space widths as a new diagnostic approach in rheumatoid arthritis: a cross-sectional and longitudinal study. Arthritis Rheum. 2005;52:3850–9.CrossRefGoogle Scholar
  12. 12.
    Hoff M, Haugeberg G, Kvien TK. Hand bone loss as an outcome measure in established rheumatoid arthritis: 2-year observational study comparing cortical and total bone loss. Arthritis Res Ther. 2007;9:R81.CrossRefGoogle Scholar
  13. 13.
    Hoff M, Kvien TK, Kalvesten J, Elden A, Haugeberg G. Adalimumab therapy reduces hand bone loss in early rheumatoid arthritis: explorative analyses from the PREMIER study. Ann Rheum Dis. 2008.Google Scholar
  14. 14.
    Forslind K, Boonen A, Albertsson K, Hafstrom I, Svensson B. For The Barfot Study Group: hand bone loss measured by digital X-ray radiogrammetry is a predictor of joint damage in early rheumatoid arthritis. Scand J Rheumatol. 2009;38:431–8.CrossRefGoogle Scholar
  15. 15.
    Guler-Yuksel M, Allaart CF, Goekoop-Ruiterman YP, de Vries-Bouwstra JK, van Groenendael JH, Mallee C, et al. Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann Rheum Dis. 2009;68:330–6.CrossRefGoogle Scholar
  16. 16.
    Boyesen P, Hoff M, Odegard S, Haugeberg G, Syversen SW, Gaarder PI, et al. Antibodies to cyclic citrullinated protein and erythrocyte sedimentation rate predict hand bone loss in patients with rheumatoid arthritis of short duration: a longitudinal study. Arthritis Res Ther. 2009;11:R103.CrossRefGoogle Scholar
  17. 17.
    El Maghraoui A, Roux C. DXA scanning in clinical practice. QJM 2008.Google Scholar
  18. 18.
    Malich A, Boettcher J, Pfeil A, Sauner D, Heyne JP, Petrovitch A, et al. The impact of technical conditions of X-ray imaging on reproducibility and precision of digital computer-assisted X-ray radiogrammetry (DXR). Skeletal Radiol. 2004;33:698–703.CrossRefGoogle Scholar
  19. 19.
    Bottcher J, Pfeil A, Rosholm A, Malich A, Petrovitch A, Heinrich B, et al. Influence of image-capturing parameters on digital X-ray radiogrammetry. J Clin Densitom. 2005;8:87–94.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Alvilde Dhainaut
    • 1
    • 2
    Email author
  • Mari Hoff
    • 1
    • 2
  • Johan Kälvesten
    • 3
  • Stian Lydersen
    • 4
  • Kristina Forslind
    • 5
    • 6
  • Glenn Haugeberg
    • 1
    • 7
  1. 1.INMRheumatology, Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of RheumatologySt. Olav’s HospitalTrondheimNorway
  3. 3.SectraLinköpingSweden
  4. 4.Unit for Applied Clinical Research, Department of Cancer Research and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.Section of RheumatologyHelsingborgs LasarettHelsingborgSweden
  6. 6.Section of Rheumatology at the Institution of Clinical ScienceUniversity HospitalLundSweden
  7. 7.Department of RheumatologySørlandet HospitalKristiansand SNorway

Personalised recommendations