Skeletal Radiology

, Volume 41, Issue 2, pp 163–167 | Cite as

Correlation between T2 relaxation time and intervertebral disk degeneration

  • Hiroyuki Takashima
  • Tsuneo TakebayashiEmail author
  • Mitsunori Yoshimoto
  • Yoshinori Terashima
  • Hajime Tsuda
  • Kazunori Ida
  • Toshihiko Yamashita
Scientific Article



Magnetic resonance T2 mapping allows for the quantification of water and proteoglycan content within tissues and can be used to detect early cartilage abnormalities as well as to track the response to therapy. The goal of the present study was to use T2 mapping to quantify intervertebral disk water content according to the Pfirrmann classification.

Materials and methods

This study involved 60 subjects who underwent lumbar magnetic resonance imaging (a total of 300 lumbar disks). The degree of disk degeneration was assessed in the midsagittal section on T2-weighted images according to the Pfirrmann classification (grades I to V). Receiver operating characteristic (ROC) analysis was performed among grades to determine the cut-off values.


In the nucleus pulposus, T2 values tended to decrease with increasing grade, and there was a significant difference in T2 values between each grade from grades I to IV. However, there was no significant difference in T2 values in the anterior or posterior annulus fibrosus. T2 values according to disk degeneration level classification were as follows: grade I (>116.8 ms), grade II (92.7–116.7 ms), grade III (72.1–92.6 ms), grade IV (<72.0 ms).


T2 values decreased with increasing Pfirrmann classification grade in the nucleus pulposus, likely reflecting a decrease in proteoglycan and water content. Thus, T2 value-based measurements of intervertebral disk water content may be useful for future clinical research on degenerative disk diseases.


Lumbar disk degeneration T2 relaxation time Classification 



Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Andersson GB. Epidemiology of low back pain. Acta Orthop Scand Suppl. 1998;281:28–31.PubMedGoogle Scholar
  2. 2.
    Benneker LM, Heini PF, Anderson SE, Alini M, Ito K. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J. 2005;14(1):27–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Praemer A, Furner S, Rice DP, American Academy of Orthopaedic Surgeons. Musculoskeletal conditions in the United States. 1st ed. Park Ridge, IL: American Academy of Orthopaedic Surgeons, 1992Google Scholar
  4. 4.
    Paajanen H, Erkintalo M, Parkkola R, Salminen J, Kormano M. Age-dependent correlation of low-back pain and lumbar disc regeneration. Arch Orthop Trauma Surg. 1997;116(1–2):106–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Salminen JJ, Erkintalo MO, Pentti J, Oksanen A, Kormano MJ. Recurrent low back pain and early disc degeneration in the young. Spine (Phila Pa 1976). 1999;24(13):1316–21.CrossRefGoogle Scholar
  6. 6.
    Weinstein JN, Gordon SL, Buckwalter JA, American Academy of Orthopaedic Surgeons. Low back pain: a scientific and clinical overview. 1st ed. Rosemont, IL: American Academy of Orthopaedic Surgeons, 1996Google Scholar
  7. 7.
    Hardy PA. Intervertebral disks on MR images: variation in signal intensity with the disk-to-magnetic field orientation. Radiology. 1996;200(1):143–7.PubMedGoogle Scholar
  8. 8.
    Ludescher B, Effelsberg J, Martirosian P, Steidle G, Markert B, Claussen C, et al. T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging. 2008;28(1):252–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Nightingale T, MacKay A, Pearce RH, Whittall KP, Flak B. A model of unloaded human intervertebral disk based on NMR relaxation. Magn Reson Med. 2000;43(1):34–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Urban JP, McMullin JF. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine (Phila Pa 1976). 1988;13(2):179–87.CrossRefGoogle Scholar
  11. 11.
    Zou J, Yang H, Miyazaki M, Morishita Y, Wei F, McGovern S, et al. Dynamic bulging of intervertebral discs in the degenerative lumbar spine. Spine (Phila Pa 1976). 2009;34(23):2545–50.CrossRefGoogle Scholar
  12. 12.
    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.CrossRefGoogle Scholar
  13. 13.
    Friedrich KM, Shepard T, de Oliveira VS, Wang L, Babb JS, Schweitzer M, et al. T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol. 2009;193(5):W411–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Weidenbaum M, Foster RJ, Best BA, Saed-Nejad F, Nickoloff E, Newhouse J, et al. Correlating magnetic resonance imaging with the biochemical content of the normal human intervertebral disc. J Orthop Res. 1992;10(4):552–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S. In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med. 2010;63(5):1193–1200.PubMedCrossRefGoogle Scholar
  17. 17.
    Karakida O, Ueda H, Ueda M, Miyasaka T. Diurnal T2 value changes in the lumbar intervertebral discs. Clin Radiol. 2003;58(5):389–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C. The value of T2 relaxation times to characterize lumbar intervertebral disks: preliminary results. AJNR Am J Neuroradiol. 2006;27(2):337–42.PubMedGoogle Scholar
  19. 19.
    Boos N, Wallin A, Gbedegbegnon T, Aebi M, Boesch C. Quantitative MR imaging of lumbar intervertebral disks and vertebral bodies: influence of diurnal water content variations. Radiology. 1993;188(2):351–4.PubMedGoogle Scholar
  20. 20.
    Krueger EC, Perry JO, Wu Y, Haughton VM. Changes in T2 relaxation times associated with maturation of the human intervertebral disk. AJNR Am J Neuroradiol. 2007;28(7):1237–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Chiu EJ, Newitt DC, Segal MR, Hu SS, Lotz JC, Majumdar S. Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine (Phila Pa 1976). 2001;26(19):E437–44.CrossRefGoogle Scholar
  22. 22.
    Gundry CR, Fritts HM. Magnetic resonance imaging of the musculoskeletal system. VIII. The spine, section 2. Clin Orthop Relat Res. 1997;343:260–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Modic MT, Pavlicek W, Weinstein MA, Boumphrey F, Ngo F, Hardy R, et al. Magnetic resonance imaging of intervertebral disk disease. Clinical and pulse sequence considerations. Radiology. 1984;152(1):103–11.PubMedGoogle Scholar
  24. 24.
    Watanabe A, Benneker LM, Boesch C, Watanabe T, Obata T, Anderson SE. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol. 2007;189(4):936–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Marinelli NL, Haughton VM, Munoz A, Anderson PA. T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine (Phila Pa 1976). 2009;34(5):520–4.CrossRefGoogle Scholar
  26. 26.
    Marinelli NL, Haughton VM, Anderson PA. T2 Relaxation times correlated with stage of lumbar intervertebral disk degeneration and patient age. AJNR Am J Neuroradiol. 2010;31(7):1278–82.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2011

Authors and Affiliations

  • Hiroyuki Takashima
    • 1
  • Tsuneo Takebayashi
    • 1
    Email author
  • Mitsunori Yoshimoto
    • 1
  • Yoshinori Terashima
    • 1
  • Hajime Tsuda
    • 1
  • Kazunori Ida
    • 1
  • Toshihiko Yamashita
    • 1
  1. 1.Department of Orthopedic Surgery, School of MedicineSapporo Medical UniversitySapporoJapan

Personalised recommendations